51
|
Allers C, Jones JA, Lasala GP, Minguell JJ. Mesenchymal stem cell therapy for the treatment of amyotrophic lateral sclerosis: signals for hope? Regen Med 2014; 9:637-47. [DOI: 10.2217/rme.14.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Based on the distinctive cellular, molecular and immunomodulatory traits of mesenchymal stem cells (MSC), it has been postulated that these cells may play a critical role in regenerative medicine. In addition to the participation of MSC in the repair of mesodermal-derived tissues (bone, cartilage), robust data have suggested that MSC may also play a reparative role in conditions involving damage of cells of ectodermal origin. The above content has been supported by the capability of MSC to differentiate into neuron-like cells as well as by a competence to generate a ‘neuroprotective’ environment. In turn, several preclinical studies have put forward the concept that MSC therapy may represent an option for the treatment of several neurological disorders and injuries, including amyotrophic lateral sclerosis. We expect that the above foundations, which have inspired this review, may result in the founding of an effective and/or palliative therapy for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Carolina Allers
- TCA Cellular Therapy, LLC, 101 Judge Tanner Blvd, Suite 502, Covington, LA 70433, USA
| | - Janet A Jones
- TCA Cellular Therapy, LLC, 101 Judge Tanner Blvd, Suite 502, Covington, LA 70433, USA
- School of Nursing, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Gabriel P Lasala
- TCA Cellular Therapy, LLC, 101 Judge Tanner Blvd, Suite 502, Covington, LA 70433, USA
| | - José J Minguell
- TCA Cellular Therapy, LLC, 101 Judge Tanner Blvd, Suite 502, Covington, LA 70433, USA
| |
Collapse
|
52
|
Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 2014; 8:229. [PMID: 25152714 PMCID: PMC4126442 DOI: 10.3389/fncel.2014.00229] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/23/2014] [Indexed: 12/30/2022] Open
Abstract
Since the initial cloning of fractalkine/CX3CL1, it was proposed that the only known member of the CX3C or δ subfamily of chemotactic cytokines could play some significant role in the nervous system, due to its high expression on neurons. The pivotal description of the localization of the unique CX3CL1 receptor, CX3CR1, on microglial cells, firmed up by the generation of cx3cr1GFP/GFP mice, opened the road to the hypothesis of some specific key interactions between microglia and neurons mediated by this pair. This expectation has been indeed supported by recent exciting evidence indicating that CX3CL1-mediated microglia-neuron interaction modulates basic physiological activities during development, adulthood and aging, including: synaptic pruning; promoting survival of neurons and neural precursors; modulating synaptic transmission and plasticity; enhancing synapse and network maturation; and facilitating the establishment of neuropathic pain circuits. Beyond playing such fascinating roles in physiological conditions, CX3CL1 signaling has been implicated in different neuropathologies. Early papers demonstrated that the levels of CX3CL1 may be modulated by various toxic stimuli in vitro and that CX3CL1 signaling is positively or negatively regulated in EAE and MS, in HIV infection and LPS challenge, in epilepsy, in brain tumors, and in other neuropathologies. In this review we focus on the experimental evidence of CX3CL1 involvement in neuroprotection and survey the common molecular and cellular mechanisms described in different brain diseases.
Collapse
Affiliation(s)
- Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Richard M Ransohoff
- Neuroinflammation Research Center, Lerner Research Institute and Cleveland Clinic Lerner College of Medicine Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
53
|
Boido M, Piras A, Valsecchi V, Spigolon G, Mareschi K, Ferrero I, Vizzini A, Temi S, Mazzini L, Fagioli F, Vercelli A. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 2014; 16:1059-72. [PMID: 24794182 DOI: 10.1016/j.jcyt.2014.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons. METHODS We administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction. RESULTS We provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. CONCLUSIONS Our results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host.
Collapse
Affiliation(s)
- Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy.
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Katia Mareschi
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Ivana Ferrero
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Andrea Vizzini
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Santa Temi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Letizia Mazzini
- ALS Centre Department of Neurology, University of Eastern Piedmont, Novara, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Department of Public Health and Paediatrics, University of Torino, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|