51
|
The effects of plant-based diets on the body and the brain: a systematic review. Transl Psychiatry 2019; 9:226. [PMID: 31515473 PMCID: PMC6742661 DOI: 10.1038/s41398-019-0552-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/22/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Western societies notice an increasing interest in plant-based eating patterns such as vegetarian and vegan, yet potential effects on the body and brain are a matter of debate. Therefore, we systematically reviewed existing human interventional studies on putative effects of a plant-based diet on the metabolism and cognition, and what is known about the underlying mechanisms. Using the search terms "plant-based OR vegan OR vegetarian AND diet AND intervention" in PubMed filtered for clinical trials in humans retrieved 205 studies out of which 27, plus an additional search extending the selection to another five studies, were eligible for inclusion based on three independent ratings. We found robust evidence for short- to moderate-term beneficial effects of plant-based diets versus conventional diets (duration ≤ 24 months) on weight status, energy metabolism and systemic inflammation in healthy participants, obese and type-2 diabetes patients. Initial experimental studies proposed novel microbiome-related pathways, by which plant-based diets modulate the gut microbiome towards a favorable diversity of bacteria species, yet a functional "bottom up" signaling of plant-based diet-induced microbial changes remains highly speculative. In addition, little is known, based on interventional studies about cognitive effects linked to plant-based diets. Thus, a causal impact of plant-based diets on cognitive functions, mental and neurological health and respective underlying mechanisms has yet to be demonstrated. In sum, the increasing interest for plant-based diets raises the opportunity for developing novel preventive and therapeutic strategies against obesity, eating disorders and related comorbidities. Still, putative effects of plant-based diets on brain health and cognitive functions as well as the underlying mechanisms remain largely unexplored and new studies need to address these questions.
Collapse
|
53
|
Increasing reproducibility and interpretability of microbiota-gut-brain studies on human neurocognition and intermediary microbial metabolites. Behav Brain Sci 2019. [DOI: 10.1017/s0140525x18002777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
In this commentary, we point to guidelines for performing human neuroimaging studies and their reporting in microbiota-gut-brain (MGB) articles. Moreover, we provide a view on interpretational issues in MGB studies, with a specific focus on gut microbiota–derived metabolites. Thus, extending the target article, we provide recommendations to the field to increase reproducibility and relevance of this type of MGB study.
Collapse
|
54
|
Labus JS, Osadchiy V, Hsiao EY, Tap J, Derrien M, Gupta A, Tillisch K, Le Nevé B, Grinsvall C, Ljungberg M, Öhman L, Törnblom H, Simren M, Mayer EA. Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. MICROBIOME 2019; 7:45. [PMID: 30898151 PMCID: PMC6429755 DOI: 10.1186/s40168-019-0656-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Evidence from preclinical and clinical studies suggests that interactions among the brain, gut, and microbiota may affect the pathophysiology of irritable bowel syndrome (IBS). As disruptions in central and peripheral serotonergic signaling pathways have been found in patients with IBS, we explored the hypothesis that the abundance of serotonin-modulating microbes of the order Clostridiales is associated with functional connectivity of somatosensory brain regions and gastrointestinal (GI) sensorimotor function. METHODS We performed a prospective study of 65 patients with IBS and 21 healthy individuals (controls) recruited from 2011 through 2013 at a secondary/tertiary care outpatient clinic in Sweden. Study participants underwent functional brain imaging, rectal balloon distension, a nutrient and lactulose challenge test, and assessment of oroanal transit time within a month. They also submitted stool samples, which were analyzed by 16S ribosomal RNA gene sequencing. A tripartite network analysis based on graph theory was used to investigate the interactions among bacteria in the order Clostridiales, connectivity of brain regions in the somatosensory network, and GI sensorimotor function. RESULTS We found associations between GI sensorimotor function and gut microbes in stool samples from controls, but not in samples from IBS patients. The largest differences between controls and patients with IBS were observed in the Lachnospiraceae incertae sedis, Clostridium XIVa, and Coprococcus subnetworks. We found connectivity of subcortical (thalamus, caudate, and putamen) and cortical (primary and secondary somatosensory cortices) regions to be involved in mediating interactions among these networks. CONCLUSIONS In a comparison of patients with IBS and controls, we observed disruptions in the interactions between the brain, gut, and gut microbial metabolites in patients with IBS-these involve mainly subcortical but also cortical regions of brain. These disruptions may contribute to altered perception of pain in patients with IBS and may be mediated by microbial modulation of the gut serotonergic system.
Collapse
Affiliation(s)
- Jennifer S Labus
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
| | - Elaine Y Hsiao
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
- UCLA Department of Integrative Biology and Physiology, Los Angeles, USA
| | - Julien Tap
- Danone Nutricia Research, Innovation, Science and Nutrition, Palaiseau, France
| | - Muriel Derrien
- Danone Nutricia Research, Innovation, Science and Nutrition, Palaiseau, France
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
| | - Kirsten Tillisch
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
| | - Boris Le Nevé
- Danone Nutricia Research, Innovation, Science and Nutrition, Palaiseau, France
| | - Cecilia Grinsvall
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Immunology and Microbiology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA CHS 42-210, MC737818, 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA.
| |
Collapse
|
55
|
Osadchiy V, Martin CR, Mayer EA. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin Gastroenterol Hepatol 2019; 17:322-332. [PMID: 30292888 PMCID: PMC6999848 DOI: 10.1016/j.cgh.2018.10.002] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Based largely on results from preclinical studies, the concept of a brain gut microbiome axis has been established, mediating bidirectional communication between the gut, its microbiome, and the nervous system. Limited data obtained in human beings suggest that alterations in these interactions may play a role in several brain gut disorders. METHODS We reviewed the preclinical and clinical literature related to the topic of brain gut microbiome interactions. RESULTS Well-characterized bidirectional communication channels, involving neural, endocrine, and inflammatory mechanisms, exist between the gut and the brain. Communication through these channels may be modulated by variations in the permeability of the intestinal wall and the blood-brain barrier. Brain gut microbiome interactions are programmed during the first 3 years of life, including the prenatal period, but can be modulated by diet, medications, and stress throughout life. Based on correlational studies, alterations in these interactions have been implicated in the regulation of food intake, obesity, and in irritable bowel syndrome, even though causality remains to be established. CONCLUSIONS Targets within the brain gut microbiome axis have the potential to become targets for novel drug development for brain gut disorders.
Collapse
|