51
|
Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med Chem 2016; 8:1609-34. [PMID: 27572818 DOI: 10.4155/fmc-2016-0117] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique class I zinc-dependent HDAC, is an emerging target in cancer and other diseases. Its substrate repertoire extends beyond histones to many nonhistone proteins. Besides being a deacetylase, HDAC8 also mediates signaling via scaffolding functions. Aberrant expression or deregulated interactions with transcription factors are critical in HDAC8-dependent cancers. Many potent HDAC8-selective inhibitors with cellular activity and anticancer effects have been reported. We present HDAC8 as a druggable target and discuss inhibitors of different chemical scaffolds with cellular effects. Furthermore, we review HDAC8 activators that revert activity of mutant enzymes. Isotype-selective HDAC8 targeting in patients with HDAC8-relevant cancers is challenging, however, is promising to avoid adverse side effects as observed with pan-HDAC inhibitors.
Collapse
|
52
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
53
|
The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses 2016; 8:v8070202. [PMID: 27455305 PMCID: PMC4974537 DOI: 10.3390/v8070202] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
Bunyaviruses are enveloped viruses with a tripartite RNA genome that can pose a serious threat to animal and human health. Members of the Phlebovirus genus of the family Bunyaviridae are transmitted by mosquitos and ticks to humans and include highly pathogenic agents like Rift Valley fever virus (RVFV) and severe fever with thrombocytopenia syndrome virus (SFTSV) as well as viruses that do not cause disease in humans, like Uukuniemi virus (UUKV). Phleboviruses and other bunyaviruses use their envelope proteins, Gn and Gc, for entry into target cells and for assembly of progeny particles in infected cells. Thus, binding of Gn and Gc to cell surface factors promotes viral attachment and uptake into cells and exposure to endosomal low pH induces Gc-driven fusion of the viral and the vesicle membranes. Moreover, Gn and Gc facilitate virion incorporation of the viral genome via their intracellular domains and Gn and Gc interactions allow the formation of a highly ordered glycoprotein lattice on the virion surface. Studies conducted in the last decade provided important insights into the configuration of phlebovirus Gn and Gc proteins in the viral membrane, the cellular factors used by phleboviruses for entry and the mechanisms employed by phlebovirus Gc proteins for membrane fusion. Here, we will review our knowledge on the glycoprotein biogenesis and the role of Gn and Gc proteins in the phlebovirus replication cycle.
Collapse
|
54
|
Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells. J Virol 2016; 90:4614-4625. [PMID: 26912629 DOI: 10.1128/jvi.00126-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response.
Collapse
|
55
|
Yamauchi Y, Greber UF. Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic 2016; 17:569-92. [PMID: 26875443 PMCID: PMC7169695 DOI: 10.1111/tra.12387] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
Viruses are spherical or complex shaped carriers of proteins, nucleic acids and sometimes lipids and sugars. They are metastable and poised for structural changes. These features allow viruses to communicate with host cells during entry, and to release the viral genome, a process known as uncoating. Studies have shown that hundreds of host factors directly or indirectly support this process. The cell provides molecules that promote stepwise virus uncoating, and direct the virus to the site of replication. It acts akin to a snooker player who delivers accurate and timely shots (cues) to the ball (virus) to score. The viruses, on the other hand, trick (snooker) the host, hijack its homeostasis systems, and dampen innate immune responses directed against danger signals. In this review, we discuss how cellular cues, facilitators, and built‐in viral mechanisms promote uncoating. Cues come from receptors, enzymes and chemicals that act directly on the virus particle to alter its structure, trafficking and infectivity. Facilitators are defined as host factors that are involved in processes which indirectly enhance entry or uncoating. Unraveling the mechanisms of virus uncoating will continue to enhance understanding of cell functions, and help counteracting infections with chemicals and vaccines.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
56
|
Stauffer S, Nebioglu F, Helenius A. In Vitro Disassembly of Influenza A Virus Capsids by Gradient Centrifugation. J Vis Exp 2016:e53909. [PMID: 27077390 DOI: 10.3791/53909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acid-triggered molecular processes closely control cell entry of many viruses that enter through the endocytic system. In the case of influenza A virus (IAV), virus fusion with the endosomal membrane as well as the subsequent disassembly of the viral capsid, called uncoating, is governed by the ionic conditions inside endocytic vesicles. The early steps in the virus life cycle are hard to study because endosomes cannot be directly accessed experimentally, creating the need for an in vitro approach. Here, we describe a method based on velocity gradient centrifugation of purified virions through a two-layer glycerol gradient, which enables analysis of the IAV core and its stability. The gradient contains a non-ionic detergent (NP-40) in its lower layer to remove the viral membrane by solubilization as the virus sediments toward the bottom. At neutral pH, viral cores are pelleted as stable structures. The major core components, matrix protein (M1) and the viral ribonucleoproteins (vRNPs), can be clearly identified in the pellet fraction by SDS-PAGE. Decreasing the pH to 6.0 or lower in the bottom layer selectively removes M1 from the pellet followed by release of vRNPs at more acidic conditions. Viral protein bands on Coomassie-stained gels can be subjected to densitometric quantification to monitor intermediate states of IAV disassembly. Besides pH, other factors that influence viral core stability can be assessed, such as salt concentration and putative viral uncoating factors, simply by modifying the detergent-containing glycerol layer accordingly. Taken together, the presented technique allows highly reproducible and quantitative analysis of viral uncoating in vitro. It can be applied to other enveloped viruses that undergo complex uncoating processes.
Collapse
Affiliation(s)
- Sarah Stauffer
- Institute of Biochemistry, ETH Zurich; Department of Biochemistry, University of Zurich;
| | | | | |
Collapse
|
57
|
Seeing Is Believing: Quantifying Is Convincing: Computational Image Analysis in Biology. FOCUS ON BIO-IMAGE INFORMATICS 2016; 219:1-39. [DOI: 10.1007/978-3-319-28549-8_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Elmer JJ, Christensen MD, Barua S, Lehrman J, Haynes KA, Rege K. The histone deacetylase inhibitor Entinostat enhances polymer-mediated transgene expression in cancer cell lines. Biotechnol Bioeng 2015; 113:1345-1356. [PMID: 26614912 DOI: 10.1002/bit.25898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 10/26/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
Abstract
Eukaryotic cells maintain an immense amount of genetic information by tightly wrapping their DNA around positively charged histones. While this strategy allows human cells to maintain more than 25,000 genes, histone binding can also block gene expression. Consequently, cells express histone acetyl transferases (HATs) to acetylate histone lysines and release DNA for transcription. Conversely, histone deacetylases (HDACs) are employed for restoring the positive charge on the histones, thereby silencing gene expression by increasing histone-DNA binding. It has previously been shown that histones bind and silence viral DNA, while hyperacetylation of histones via HDAC inhibition restores viral gene expression. In this study, we demonstrate that treatment with Entinostat, an HDAC inhibitor, enhances transgene (luciferase) expression by up to 25-fold in human prostate and murine bladder cancer cell lines when used with cationic polymers for plasmid DNA delivery. Entinostat treatment altered cell cycle progression, resulting in a significant increase in the fraction of cells present in the G0/G1 phase at low micromolar concentrations. While this moderate G0/G1 arrest disappeared at higher concentrations, a modest increase in the fraction of apoptotic cells and a decrease in cell proliferation were observed, consistent with the known anticancer effects of the drug. DNase accessibility studies revealed no significant change in plasmid transcriptional availability with Entinostat treatment. However, quantitative PCR studies indicated that Entinostat treatment, at the optimal dose for enhancing transgene expression, led to an increase in the amount of plasmid present in the nucleus in two cancer cell lines. Taken together, our results show that Entinostat enhances polymer- mediated transgene expression and can be useful in applications related to transient protein expression in mammalian cells. Biotechnol. Bioeng. 2016;113: 1345-1356. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacob J Elmer
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287
| | | | - Sutapa Barua
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287
| | - Jennifer Lehrman
- Harrington Biomedical Engineering, Arizona State University, Tempe, Arizona
| | - Karmella A Haynes
- Harrington Biomedical Engineering, Arizona State University, Tempe, Arizona
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
59
|
Recent strategies and progress in identifying host factors involved in virus replication. Curr Opin Microbiol 2015; 26:79-88. [PMID: 26112615 PMCID: PMC7185747 DOI: 10.1016/j.mib.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022]
Abstract
Viruses are completely dependent on their host cells for the successful production of progeny viruses. At each stage of the viral life cycle an intricate interplay between virus and host takes place with the virus aiming to usurp the host cell for its purposes and the host cell trying to block the intruder from propagation. In recent years these interactions have been studied on a global level by systems biology approaches, such as RNA interference screens, transcriptomic or proteomic methodologies, and exciting new insights into the pathogen-host relationship have been revealed. In this review, we summarize the available data, give examples for important findings from such studies and point out current limitations and potential future directions.
Collapse
|
60
|
HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 2015; 36:481-92. [PMID: 26013035 DOI: 10.1016/j.tips.2015.04.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 02/08/2023]
Abstract
Histone deacetylase 8 (HDAC8) is a class I histone deacetylase implicated as a therapeutic target in various diseases, including cancer, X-linked intellectual disability, and parasitic infections. It is a structurally well-characterized enzyme that also deacetylates nonhistone proteins. In cancer, HDAC8 is a major 'epigenetic player' that is linked to deregulated expression or interaction with transcription factors critical to tumorigenesis. In the parasite Schistosoma mansoni and in viral infections, HDAC8 is a novel target to subdue infection. The current challenge remains in the development of potent selective inhibitors that would specifically target HDAC8 with fewer adverse effects compared with pan-HDAC inhibitors. Here, we review HDAC8 as a drug target and discuss inhibitors with respect to their structural features and therapeutic interventions.
Collapse
|
61
|
Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 2014; 346:473-7. [PMID: 25342804 DOI: 10.1126/science.1257037] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During cell entry, capsids of incoming influenza A viruses (IAVs) must be uncoated before viral ribonucleoproteins (vRNPs) can enter the nucleus for replication. After hemagglutinin-mediated membrane fusion in late endocytic vacuoles, the vRNPs and the matrix proteins dissociate from each other and disperse within the cytosol. Here, we found that for capsid disassembly, IAV takes advantage of the host cell's aggresome formation and disassembly machinery. The capsids mimicked misfolded protein aggregates by carrying unanchored ubiquitin chains that activated a histone deacetylase 6 (HDAC6)-dependent pathway. The ubiquitin-binding domain was essential for recruitment of HDAC6 to viral fusion sites and for efficient uncoating and infection. That other components of the aggresome processing machinery, including dynein, dynactin, and myosin II, were also required suggested that physical forces generated by microtubule- and actin-associated motors are essential for IAV entry.
Collapse
Affiliation(s)
- Indranil Banerjee
- Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland
| | - Yasuyuki Miyake
- Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Patrick Matthias
- Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland.
| | - Yohei Yamauchi
- Institute of Biochemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Switzerland.
| |
Collapse
|
62
|
Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J Virol 2014; 88:13029-46. [PMID: 25165113 DOI: 10.1128/jvi.01430-14] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Influenza A virus (IAV) uses the low pH in late endocytic vacuoles as a cue for penetration by membrane fusion. Here, we analyzed the prefusion reactions that prepare the core for uncoating after it has been delivered to the cytosol. We found that this priming process occurs in two steps that are mediated by the envelope-embedded M2 ion channel. The first weakens the interactions between the matrix protein, M1, and the viral ribonucleoprotein bundle. It involves a conformational change in a linker sequence and the C-terminal domain of M1 after exposure to a pH below 6.5. The second step is triggered by a pH of <6.0 and by the influx of K(+) ions. It causes additional changes in M1 as well as a loss of stability in the viral ribonucleoprotein bundle. Our results indicate that both the switch from Na(+) to K(+) in maturing endosomes and the decreasing pH are needed to prime IAV cores for efficient uncoating and infection of the host cell. IMPORTANCE The entry of IAV involves several steps, including endocytosis and fusion at late endosomes. Entry also includes disassembly of the viral core, which is composed of the viral ribonucleoproteins and the RNA genome. We have found that the uncoating process of IAV is initiated long before the core is delivered into the cytosol. M2, an ion channel in the viral membrane, is activated when the virus passes through early endosomes. Here, we show that protons entering the virus through M2 cause a conformational change in the matrix protein, M1. This weakens interactions between M1 and the viral ribonucleoproteins. A second change was found to occur when the virus enters late endosomes. The preacidified core is then exposed to a high concentration of K(+), which affects the interactions between the ribonucleoproteins. Thus, when cores are finally delivered to the cytosol, they are already partially destabilized and, therefore, uncoating competent and infectious.
Collapse
|
63
|
Abstract
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.
Collapse
Affiliation(s)
- Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; INSERM U604, Paris F-75015, France; and INRA, USC2020, Paris F-75015, France
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
64
|
Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 2013; 95:263-277. [PMID: 24225499 DOI: 10.1099/vir.0.059477-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus is a major human pathogen that causes annual epidemics and occasional pandemics. Moreover, the virus causes outbreaks in poultry and other animals, such as pigs, requiring costly and laborious countermeasures. Therefore, influenza virus has a substantial impact on health and the global economy. Here, we review entry of this important pathogen into target cells, an essential process by which viral genomes are delivered from extracellular virions to sites of transcription/replication in the cell nucleus. We summarize current knowledge on the interaction of influenza viruses with their receptor, sialic acid, and highlight the ongoing search for additional receptors. We describe receptor-mediated endocytosis and the recently discovered macropinocytosis as alternative virus uptake pathways, and illustrate the subsequent endosomal trafficking of the virus with advanced live microscopy techniques. Release of virus from the endosome and import of the viral ribonucleoproteins into the host cell nucleus are also outlined. Although a focus has been on viral protein function during entry, recent studies have revealed exciting information on cellular factors required for influenza virus entry. We highlight these, and discuss established entry inhibitors targeting viral and host factors, as well as the latest prospects for designing novel 'anti-entry' compounds. New entry inhibitors are of particular importance for current efforts to develop the next generation of anti-influenza drugs - entry is the first essential step of virus replication and is an ideal target to block infection efficiently.
Collapse
Affiliation(s)
- Thomas O Edinger
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
65
|
Banerjee I, Yamauchi Y, Helenius A, Horvath P. High-content analysis of sequential events during the early phase of influenza A virus infection. PLoS One 2013; 8:e68450. [PMID: 23874633 PMCID: PMC3709902 DOI: 10.1371/journal.pone.0068450] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) represents a worldwide threat to public health by causing severe morbidity and mortality every year. Due to high mutation rate, new strains of IAV emerge frequently. These IAVs are often drug-resistant and require vaccine reformulation. A promising approach to circumvent this problem is to target host cell determinants crucial for IAV infection, but dispensable for the cell. Several RNAi-based screens have identified about one thousand cellular factors that promote IAV infection. However, systematic analyses to determine their specific functions are lacking. To address this issue, we developed quantitative, imaging-based assays to dissect seven consecutive steps in the early phases of IAV infection in tissue culture cells. The entry steps for which we developed the assays were: virus binding to the cell membrane, endocytosis, exposure to low pH in endocytic vacuoles, acid-activated fusion of viral envelope with the vacuolar membrane, nucleocapsid uncoating in the cytosol, nuclear import of viral ribonucleoproteins, and expression of the viral nucleoprotein. We adapted the assays to automated microscopy and optimized them for high-content screening. To quantify the image data, we performed both single and multi-parametric analyses, in combination with machine learning. By time-course experiments, we determined the optimal time points for each assay. Our quality control experiments showed that the assays were sufficiently robust for high-content analysis. The methods we describe in this study provide a powerful high-throughput platform to understand the host cell processes, which can eventually lead to the discovery of novel anti-pathogen strategies.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
- * E-mail: (PH); (AH)
| | - Peter Horvath
- Light Microscopy and Screening Centre, ETH Zürich, Zurich, Switzerland
- * E-mail: (PH); (AH)
| |
Collapse
|
66
|
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS One 2013; 8:e66796. [PMID: 23805279 PMCID: PMC3689682 DOI: 10.1371/journal.pone.0066796] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza virus replication, a small interfering RNA (siRNA) screen of 720 HPKs was performed. From the screen, 17 HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5 (CDK13), CALM2, PKN3, and HK2) were validated as essential for A/WSN/33 influenza virus replication, and 6 HPKs (CDK13, HK2, NEK8, PANK4, PLK4 and SGK3) were identified as vital for both A/WSN/33 and A/New Caledonia/20/99 influenza virus replication. These HPKs were found to affect multiple host pathways and regulated by miRNAs induced during infection. Using a panel of miRNA agonists and antagonists, miR-149* was found to regulate NEK8 expression, miR-548d-3p was found to regulate MAPK1 transcript expression, and miRs -1228 and -138 to regulate CDK13 expression. Up-regulation of miR-34c induced PLK4 transcript and protein expression and enhanced influenza virus replication, while miR-34c inhibition reduced viral replication. These findings identify HPKs important for influenza viral replication and show the miRNAs that govern their expression.
Collapse
|
67
|
|
68
|
Ling H, Peng L, Seto E, Fukasawa K. Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 2012; 11:3779-91. [PMID: 23022877 DOI: 10.4161/cc.21985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Centrosome duplication is controlled both negatively and positively by a number of proteins. The activities and stabilities of those regulatory proteins are in many cases controlled by posttranslational modifications. Although acetylation and deacetylation are highly common posttranslational modifications, their roles in the regulation of centrosome duplication had not been closely examined. Here, through focusing on the deacetylases, we investigated the role of acetylation/deacetylation in the regulation of centrosome duplication and induction of abnormal amplification of centrosomes. We found that the deacetylation event negatively controls centrosome duplication and amplification. Of the 18 total known deacetylases (HDAC1-11, SIRT1-7), ten deacetylases possess the activity to suppress centrosome amplification, and their centrosome amplification suppressing activities are strongly associated with their abilities to localize to centrosomes. Among them, HDAC1, HDAC5 and SIRT1 show the highest suppressing activities, but each of them suppresses centrosome duplication and/or amplification with its unique mechanism.
Collapse
Affiliation(s)
- Hongbo Ling
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | |
Collapse
|
69
|
De Conto F, Di Lonardo E, Arcangeletti MC, Chezzi C, Medici MC, Calderaro A. Highly dynamic microtubules improve the effectiveness of early stages of human influenza A/NWS/33 virus infection in LLC-MK2 cells. PLoS One 2012; 7:e41207. [PMID: 22911759 PMCID: PMC3401105 DOI: 10.1371/journal.pone.0041207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aims to investigate the role of microtubule dynamics in the initiation of NWS/33 human influenza A (NWS) virus infection in MDCK and LLC-MK2 mammalian kidney cells. We previously demonstrated a host-dependent role of the actin cytoskeleton in inducing restriction during the early phases of NWS infection. Furthermore, we showed the differential infectious entry of NWS virus in the above mentioned cell models. METHODOLOGY/PRINCIPAL FINDINGS By first employing a panel of microtubule-modulators, we evidenced that microtubule-stabilization negatively interferes with NWS replication in LLC-MK2 but not in MDCK cells. Conversely, microtubule-depolymerization improves NWS growth in LLC-MK2 but not in the MDCK model. By using immunofluorescence labelling and Western blotting analyses upon NWS infection in mammalian kidney cells, it was observed that the occurrence of alpha-tubulin hyperacetylation--a post-translational modified form suggestive of stable microtubules--was significantly delayed in LLC-MK2 when compared to MDCK cells. Furthermore, mock-infected LLC-MK2 cells were shown to have higher levels of both acetylated alpha-tubulin and microtubule-associated protein 4 (MAP4), the latter being essential for the maintenance of normal microtubule polymer levels in interphase epithelial cells. Finally, to obtain highly dynamic microtubules in LLC-MK2 cells, we knocked down the expression of MAP4 by using a RNA-mediated RNA interference approach. The results evidenced that MAP4 silencing improves NWS growth in LLC-MK2 cells. CONCLUSION By evidencing the cell type-dependent regulatory role of microtubule dynamics on NWS replication in mammalian kidney cells, we demonstrated that microtubule-stabilization represents a restriction factor for the initiation of NWS infection in LLC-MK2 but not in MDCK cells.
Collapse
Affiliation(s)
- Flora De Conto
- Section of Microbiology, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
70
|
Jessberger R. Age-related aneuploidy through cohesion exhaustion. EMBO Rep 2012; 13:539-46. [PMID: 22565322 PMCID: PMC3367239 DOI: 10.1038/embor.2012.54] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/29/2012] [Indexed: 11/08/2022] Open
Abstract
The trend of women to become pregnant when older than in previous generations poses a paramount medical problem, for oocytes are particularly prone to chromosome missegregation, and aneuploidy increases with age. Recent data strongly suggest that as oocyte age increases sister chromatid cohesion is weakened or lost. Cohesin deterioration seems to contribute significantly to age-dependent aneuploidy, as discussed in this review.
Collapse
Affiliation(s)
- Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fiedlerstrasse 42, 01326 Dresden, Germany.
| |
Collapse
|