51
|
Simon C, Klose T, Herbst S, Han BG, Sinz A, Glaeser RM, Stubbs MT, Lilie H. Disulfide linkage and structure of highly stable yeast-derived virus-like particles of murine polyomavirus. J Biol Chem 2014; 289:10411-10418. [PMID: 24567335 DOI: 10.1074/jbc.m113.484162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
VP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production. These in vivo assembled yVLPs differ in several properties from VLPs assembled in vitro from bacterially produced pentamers. We found several intermolecular disulfide linkages in yVLPs involving 5 of the 6 cysteines of VP1 (Cys(115)-Cys(20), Cys(12)-Cys(20), Cys(16)-Cys(16), Cys(12)/ Cys(16)-Cys(115), and Cys(274)-Cys(274)), indicating a highly coordinated disulfide network within the in vivo assembled particles involving the N-terminal region of VP1. Cryoelectron microscopy revealed structured termini not resolved in the published crystal structure of the bacterially expressed VLP that appear to clamp the pentameric subunits together. These structural features are probably the reason for the observed higher stability of in vivo assembled yVLPs compared with in vitro assembled bacterially expressed VLPs as monitored by increased thermal stability, higher resistance to trypsin cleavage, and a higher activation enthalpy of the disassembly reaction. This high stability is decreased following disassembly of yVLPs and subsequent in vitro reassembly, suggesting a role for cellular components in optimal assembly.
Collapse
Affiliation(s)
- Claudia Simon
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sabine Herbst
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Strasse 04, 06120 Halle, Germany
| | - Bong Gyoon Han
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Andrea Sinz
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Strasse 04, 06120 Halle, Germany
| | - Robert M Glaeser
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Milton T Stubbs
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes Strasse 03, 06120 Halle, Germany.
| |
Collapse
|
52
|
Abstract
The principles that determine the organization of the nucleus have become clearer in recent years, largely because of new insights into polymer, colloid, and soft-matter science. Macromolecules, together with the giant linear polymers that form the chromosomes, are confined at high concentrations within the nuclear envelope and their interactions are influenced strongly by short-range depletion or entropic forces which are negligible in dilute systems, in addition to the more familiar van der Waals, electrostatic, steric, hydrogen bonding, and hydrophobic forces. The studies described in this volume are consistent with the model that this complex and concentrated mixture of macromolecules is maintained in a delicate equilibrium by quite simple although unsuspected physicochemical principles. The sensitivity of this equilibrium to perturbation may underlie the controversies about the existence of a nuclear matrix or scaffold. In this volume, we underline the importance for cell biologists of being familiar with current work in colloid, polymer, soft matter, and nanoscience. This chapter presents a brief background to the aspects of the nucleus that are considered in detail in subsequent chapters.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, CRCHUQ-Oncology, Québec, Canada; Biosystems Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
53
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
54
|
Abstract
Viruses carry out many of their activities inside cells, where they synthesise proteins that are not incorporated into viral particles. Some of these proteins trigger signals to kidnap cell organelles and factors which will form a new macro-structure, the virus factory, that acts as a physical scaffold for viral replication and assembly. We are only beginning to envisage the extraordinary complexity of these interactions, whose characterisation is a clear experimental challenge for which we now have powerful tools. Conventional study of infection kinetics using virology, biochemistry and cell biology methods can be followed by genome-scale screening and global proteomics. These are important new technologies with which we can identify the cell factors used by viruses at different stages in their life cycle. Light microscopy, electron microscopy and electron tomography, together with labelling methods for molecular mapping in situ, show immature viral intermediates, mature virions and recruited cell elements in their natural environment. This chapter describes how these methods are being used to understand the cell biology of viral morphogenesis and suggests what they might achieve in the near future.
Collapse
Affiliation(s)
- Mauricio G. Mateu
- "Severo Ochoa" (CSIC_UAM), And Dept. of Molecular Biology, Centro de Biología Molecular, Cantoblanco, Madrid, 28049 Madrid Spain
| | | |
Collapse
|
55
|
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain,
| |
Collapse
|
56
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
57
|
Moshe A, Gorovits R. Virus-induced aggregates in infected cells. Viruses 2012; 4:2218-32. [PMID: 23202461 PMCID: PMC3497049 DOI: 10.3390/v4102218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/21/2022] Open
Abstract
During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
58
|
de Castro IF, Volonté L, Risco C. Virus factories: biogenesis and structural design. Cell Microbiol 2012; 15:24-34. [PMID: 22978691 PMCID: PMC7162364 DOI: 10.1111/cmi.12029] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
Replication and assembly of many viruses occur in specific intracellular compartments known as ‘virus factories’. Our knowledge of the biogenesis and architecture of these unique structures has increased considerably in the last 10 years, due to technical advances in cellular, molecular and structural biology. We now know that viruses build replication organelles, which recruit cell and viral components in a macrostructure in which viruses assemble and mature. Cell membranes and cytoskeleton participate in the biogenesis of these scaffolds and mitochondria are present in many factories, where they might supply energy and other essential factors. New inter‐organelle contacts have been visualized within virus factories, whose structure is very dynamic, as it changes over time. There is increasing interest in identifying the factors involved in their biogenesis and functional architecture, and new microscopy techniques are helping us to understand how these complex entities are built and work. In this review, we summarize recent findings on the cell biology, biogenesis and structure of virus factories.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Lab, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|