51
|
Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. DISEASES OF AQUATIC ORGANISMS 2016; 121:149-159. [PMID: 27667812 DOI: 10.3354/dao03043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.
Collapse
|
52
|
DePasquale JA. Dynamic apical surface rings in superficial layer cells of koi Cyprinus carpio scale epidermis. JOURNAL OF FISH BIOLOGY 2016; 89:1740-1753. [PMID: 27412047 DOI: 10.1111/jfb.13079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
This study examined the novel ring-shaped structures found in the apical surface of individual cells of the scale epidermis of koi Cyprinus carpio. These apical rings are highly dynamic structures with lifetimes ranging from a few to several minutes. While several ring forms were observed, the predominant ring morphology is circular or oval. Two distinct ring forms were identified and designated type I and type II. Type I rings have a well-defined outer border that encircles the surface microridges. Type II rings are smooth-surfaced, dinner-plate-like structures with membranous folds or compressed microridges in the centre. Type II rings appear less frequently than type I rings. Type I rings form spontaneously, arising from swollen or physically interrupted microridges but without initially perturbing the encircled microridges. After persisting for up to several minutes the ring closes in a centripetal movement to form a circular or irregular-shaped structure, the terminal disc. The terminal disc eventually disappears, leaving behind a submembranous vesicle-like structure, the terminal body. Type I rings can undergo multiple cycles of formation and closing. Recycling epidermal apical rings form through centrifugal expansion from the terminal disc followed by apparent contraction back to the disc structure, whereupon the cycle may repeat or cease. The findings demonstrate a novel skin surface structure in fishes and are discussed with respect to communication with the external aqueous environment.
Collapse
Affiliation(s)
- J A DePasquale
- Morphogenyx Inc., P. O. Box 717, East Northport, NY, 11731, U.S.A
| |
Collapse
|
53
|
Jiang S, Jia Z, Xin L, Sun Y, Zhang R, Wang W, Wang L, Song L. The cytochemical and ultrastructural characteristics of phagocytes in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 55:490-498. [PMID: 27338208 DOI: 10.1016/j.fsi.2016.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Phagocytes have been proved to play vital roles in the innate immune response. However, the cellular characteristics of phagocytes in invertebrates, especially in molluscs, remain largely unknown. In the present study, fluorescence activated cell sorting (FACS) was employed to sort the phagocytes from the non-phagocytic haemocytes of the Pacific oyster Crassostrea gigas. The cytochemical staining analysis revealed that phagocytes were positive staining for α-naphthyl acetate esterase and myeloperoxidase, while negative staining for toluidine blue and periodic acid-Schiff. The non-phagocytic haemocytes exhibited positive staining for periodic acid-Schiff, weak positive staining for toluidine blue, but negative staining for α-naphthyl acetate esterase and myeloperoxidase. In addition, phagocytes exhibited ultrastructural cellular features similar to those of macrophages, with large cell diameter, rough cell membrane and extended pseudopodia revealed by the scanning electron microscopy, while the non-phagocytic haemocytes exhibited small cell diameter, smooth cell surface and round spherical shape. Transmission electron microscopy further demonstrated that phagocytes were abundant of cytoplasmic bodies and mitochondria, while non-phagocytic haemocytes were characterized as the comparatively large cell nucleus with contorted and condensed heterochromatin adherent to the nuclear envelope. Moreover, compared with non-phagocytic haemocytes, phagocytes exhibited significantly higher levels of intracellular cytokines, including tumor necrosis factor, interferon-like protein and interleukin-17, and significantly higher abundance of lysosome and reactive oxygen species, which were of great importance to the activation of immune response and pathogen clearance. Taken together, these findings revealed the different cytochemical and ultrastructural features between phagocytes and non-phagocytic haemocytes in C. gigas, which would provide an important clue to investigate the mechanism of phagocytosis underlying the innate immune response.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
54
|
Abstract
Macropinocytosis is a means by which eukaryotic cells ingest extracellular liquid and dissolved molecules. It is widely conserved amongst cells that can take on amoeboid form and, therefore, appears to be an ancient feature that can be traced back to an early stage of evolution. Recent advances have highlighted how this endocytic process can be subverted during pathology - certain cancer cells use macropinocytosis to feed on extracellular protein, and many viruses and bacteria use it to enter host cells. Prion and prion-like proteins can also spread and propagate from cell to cell through macropinocytosis. Progress is being made towards using macropinocytosis therapeutically, either to deliver drugs to or cause cell death by inducing catastrophically rapid fluid uptake. Mechanistically, the Ras signalling pathway plays a prominent and conserved activating role in amoebae and in mammals; mutant amoebae with abnormally high Ras activity resemble tumour cells in their increased capacity for growth using nutrients ingested through macropinocytosis. This Commentary takes a functional and evolutionary perspective to highlight progress in understanding and use of macropinocytosis, which is an ancient feeding process used by single-celled phagotrophs that has now been put to varied uses by metazoan cells and is abused in disease states, including infection and cancer.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
55
|
Stow JL, Condon ND. The cell surface environment for pathogen recognition and entry. Clin Transl Immunology 2016; 5:e71. [PMID: 27195114 PMCID: PMC4855265 DOI: 10.1038/cti.2016.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.
Collapse
Affiliation(s)
- Jennifer L Stow
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
56
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
57
|
Immune Homeostatic Macrophages Programmed by the Bacterial Surface Protein NhhA Potentiate Nasopharyngeal Carriage of Neisseria meningitidis. mBio 2016; 7:e01670-15. [PMID: 26884432 PMCID: PMC4752598 DOI: 10.1128/mbio.01670-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neisseria meningitidis colonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhi phenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. The in vivo validity of these findings was corroborated using a murine model challenged with N. meningitidis systematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated with N. meningitidis persistence at the nasopharynx. In vitro studies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted by N. meningitidis to maintain asymptomatic nasopharyngeal colonization. Neisseria meningitidis is an opportunistic human-specific pathogen that colonizes the nasopharyngeal mucosa asymptomatically in approximately 10% of individuals. Very little is known about how this bacterium evades immune activation during the carriage stage. Here, we observed that N. meningitidis, via the conserved surface protein NhhA, skewed monocyte differentiation into macrophages with a CD200Rhi phenotype. Both in vivo and in vitro data demonstrated that these macrophages, upon meningococcal infection, played an important role in forming a homeostatic immune microenvironment through their capacity to eliminate invading bacteria and to generate anti-inflammatory mediators. This work provides novel insight into the mechanisms underlying the commensal persistence of N. meningitidis.
Collapse
|
58
|
Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 2015; 264:220-32. [PMID: 25703562 DOI: 10.1111/imr.12268] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By virtue of their position at the crossroads between the innate and adaptive immune response, macrophages play an essential role in the control of bacterial infections. Paradoxically, macrophages serve as the natural habitat to Mycobacterium tuberculosis (Mtb). Mtb subverts the macrophage's mechanisms of intracellular killing and antigen presentation, leading ultimately to the development of tuberculosis (TB) disease. Here, we describe mechanisms of Mtb uptake by the macrophage and address key macrophage functions that are targeted by Mtb-specific effector molecules enabling this pathogen to circumvent host immune response. The macrophage functions described in this review include fusion between phagosomes and lysosomes, production of reactive oxygen and nitrogen species, antigen presentation and major histocompatibility complex class II expression and trafficking, as well as autophagy and apoptosis. All these are Mtb-targeted key cellular pathways, normally working in concert in the macrophage to recognize, respond, and activate 'proper' immune responses. We further analyze and discuss major molecular interactions between Mtb virulence factors and key macrophage proteins and provide implications for vaccine and drug development.
Collapse
Affiliation(s)
- Zakaria Hmama
- Department of Medicine, Division of Infectious Diseases, Infection and Immunity Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
59
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
60
|
de Carvalho TMU, Barrias ES, de Souza W. Macropinocytosis: a pathway to protozoan infection. Front Physiol 2015; 6:106. [PMID: 25914647 PMCID: PMC4391238 DOI: 10.3389/fphys.2015.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis.
Collapse
Affiliation(s)
- Tecia M U de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emile S Barrias
- Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
61
|
BoseDasgupta S, Moes S, Jenoe P, Pieters J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 2015; 282:1167-81. [PMID: 25645340 DOI: 10.1111/febs.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1.
Collapse
|
62
|
Tweedell R, Tao D, Dinglasan RR. The cellular and proteomic response of primary and immortalized murine Kupffer cells following immune stimulation diverges from that of monocyte-derived macrophages. Proteomics 2014; 15:545-53. [PMID: 25266554 DOI: 10.1002/pmic.201400216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 12/23/2022]
Abstract
Kupffer cells (KCs) are the first line of defense in the liver against pathogens, yet several microbes successfully target the liver, bypass immune surveillance, and effectively develop in this tissue. Our current, albeit poor, understanding of KC-pathogen interactions has been largely achieved through the study of primary cells, requiring isolation from large numbers of animals. To facilitate the study of KC biology, an immortalized rat KC line 1, RKC1, was developed. We performed a comparative global proteomic analysis of RKC1 and primary rat KCs (PRKC) to characterize their respective responses to lipopolysaccharide-mediated immune stimulation. We identified patent differences in the proteomic response profile of RKC1 and PRKC to lipopolysaccharide. We observed that PRKC upregulated more immune function pathways and exhibited marked changes in cellular morphology following stimulation. We consequently analyzed the cytoskeletal signaling pathways of these cells in light of the fact that macrophages are known to induce cytoskeletal changes in response to pathogens. Our findings suggest that KCs respond differently to inflammatory stimulus than do monocyte-derived macrophages, and such data may provide insight into how pathogens, such as the malaria parasite, may have evolved mechanisms of liver entry through KCs without detection.
Collapse
Affiliation(s)
- Rebecca Tweedell
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
63
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
64
|
BoseDasgupta S, Pieters J. Striking the Right Balance Determines TB or Not TB. Front Immunol 2014; 5:455. [PMID: 25339950 PMCID: PMC4189424 DOI: 10.3389/fimmu.2014.00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis continues to be one of the most successful pathogens on earth. Upon inhalation of M. tuberculosis by a healthy individual, the host immune system will attempt to eliminate these pathogens using a combination of immune defense strategies. These include the recruitment of macrophages and other phagocytes to the site of infection, production of cytokines that enhance the microbicidal capacity of the macrophages, as well as the activation of distinct subsets of leukocytes that work in concert to fight the infection. However, being as successful as it is, M. tuberculosis has evolved numerous strategies to subvert host immunity at virtual every level. As a consequence, one third of the world inhabitants carry M. tuberculosis, and tuberculosis continuous to cause disease in more than 8 million people with deadly consequences in well over 1 million patients each year. In this review, we discuss several of the strategies that M. tuberculosis employs to circumvent host immunity, as well as describe some of the mechanisms that the host uses to counter such subversive strategies. As for many other infectious diseases, the ultimate outcome is usually defined by the relative strength of the virulence strategies employed by the tubercle bacillus versus the arsenal of immune defense mechanisms of the infected host.
Collapse
Affiliation(s)
| | - Jean Pieters
- Biozentrum, University of Basel , Basel , Switzerland
| |
Collapse
|
65
|
BoseDasgupta S, Pieters J. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 2014; 588:3898-905. [PMID: 25217836 DOI: 10.1016/j.febslet.2014.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Coronin 1 is a member of the evolutionarily conserved coronin protein family. Coronin proteins are characterized by the presence of a central WD repeat and a C-terminal coiled coil that in coronin 1 is responsible for trimerization. Coronin 1 was identified as a host protein protecting intracellularly residing mycobacteria from degradation by activating the Ca(2+)/calcineurin pathway but whether or not trimerization is essential for this function remains unknown. We here show that trimerization is essential to promote mycobacterial survival within macrophages and activate calcineurin. Furthermore, macrophage activation that induces serine-phosphorylation on coronin 1 resulted in coronin 1 monomerization. These results suggest that modulation of coronin 1 oligomerization is an effective way to determine the outcome of a mycobacterial infection in macrophages.
Collapse
|
66
|
Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc Natl Acad Sci U S A 2014; 111:12835-40. [PMID: 25136120 DOI: 10.1073/pnas.1406908111] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) have emerged as important cellular players in tissue repair and innate immunity. Whether these cells meaningfully regulate adaptive immune responses upon activation has yet to be explored. Here we show that upon IL-1β stimulation, peripheral ILC3s become activated, secrete cytokines, up-regulate surface MHC class II molecules, and express costimulatory molecules. ILC3s can take up latex beads, process protein antigen, and consequently prime CD4(+) T-cell responses in vitro. The cognate interaction of ILC3s and CD4(+) T cells leads to T-cell proliferation both in vitro and in vivo, whereas its disruption impairs specific T-cell and T-dependent B-cell responses in vivo. In addition, the ILC3-CD4(+) T-cell interaction is bidirectional and leads to the activation of ILC3s. Taken together, our data reveal a novel activation-dependent function of peripheral ILC3s in eliciting cognate CD4(+) T-cell immune responses.
Collapse
|