51
|
Tang FSM, Hansbro PM, Burgess JK, Ammit AJ, Baines KJ, Oliver BG. A novel immunomodulatory function of neutrophils on rhinovirus-activated monocytes in vitro. Thorax 2016; 71:1039-1049. [PMID: 27287090 PMCID: PMC5099217 DOI: 10.1136/thoraxjnl-2015-207781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/15/2016] [Indexed: 01/24/2023]
Abstract
Background Rhinovirus (RV) infections are the major precipitant of asthma exacerbations. While neutrophilic lung inflammation occurs during such infections, its role remains unclear. Neutrophilic inflammation is associated with increased asthma severity and steroid refractory disease. Neutrophils are vital for controlling infections but also have immunomodulatory functions. Previously, we found that neutrophils respond to viral mimetics but not replication competent RV. We aimed to investigate if neutrophils are activated and/or modulate immune responses of monocytes during RV16 infection. Methods Primary human monocytes and autologous neutrophils were cocultured with or without RV16, in direct contact or separated by transwells. RV16-stimulated monocytes were also exposed to lysed neutrophils, neutrophil membrane components or soluble neutrophil intracellular components. Interleukin 6 (IL-6) and C-X-C motif (CXC)L8 mRNA and proteins were measured by quantitative PCR and ELISA at 24 hours. Results RV16 induced IL-6 and CXCL8 in monocytes, but not neutrophils. RV16-induced IL-6 and CXCL8 from monocytes was reduced in the presence of live neutrophils. Transwell separation abolished the inhibitory effects. Lysed neutrophils inhibited RV16-induced IL-6 and CXCL8 from monocytes. Neutrophil intracellular components alone effectively inhibited RV16-induced monocyte-derived IL-6 and CXCL8. Neutrophil intracellular components reduced RV16-induced IL-6 and CXCL8 mRNA in monocytes. Conclusions Cell contact between monocytes and neutrophils is required, and preformed neutrophil mediator(s) are likely to be involved in the suppression of cytokine mRNA and protein production. This study demonstrates a novel regulatory function of neutrophils on RV-activated monocytes in vitro, challenging the paradigm that neutrophils are predominantly proinflammatory.
Collapse
Affiliation(s)
- Francesca S M Tang
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia Discipline of Pharmacology, Faculty of Medicine, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia Discipline of Pharmacology, Faculty of Medicine, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
52
|
Maltby S, Plank M, Tay HL, Collison A, Foster PS. Targeting MicroRNA Function in Respiratory Diseases: Mini-Review. Front Physiol 2016; 7:21. [PMID: 26869937 PMCID: PMC4740489 DOI: 10.3389/fphys.2016.00021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/15/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that modulate expression of the majority of genes by inhibiting protein translation. Growing literature has identified functional roles for miRNAs across a broad range of biological processes. As such, miRNAs are recognized as potential disease biomarkers and novel targets for therapies. While several miRNA-targeted therapies are currently in clinical trials (e.g., for the treatment of hepatitis C virus infection and cancer), no therapies have targeted miRNAs in respiratory diseases in the clinic. In this mini-review, we review the current knowledge on miRNA expression and function in respiratory diseases, intervention strategies to target miRNA function, and considerations specific to respiratory diseases. Altered miRNA expression profiles have been reported in a number of respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. These include alterations in isolated lung tissue, as well as sputum, bronchoalveolar lavage fluids and peripheral blood or serum. The observed alterations in easily accessible body fluids (e.g., serum) have been proposed as new biomarkers that may inform disease diagnosis and patient management. In a subset of studies, miRNA-targeted interventions also improved disease outcomes, indicating functional roles for altered miRNA expression in disease pathogenesis. In fact, direct administration of miRNA-targeting molecules to the lung has yielded promising results in a number of animal models. The ability to directly administer compounds to the lung holds considerable promise and may limit potential off-target effects and side effects caused by the systemic administration required to treat other diseases.
Collapse
Affiliation(s)
- Steven Maltby
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Hock L Tay
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Adam Collison
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Experimental and Translational Respiratory Medicine, Faculty of Health, School of Medicine and Public Health, University of NewcastleCallaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of NewcastleCallaghan, NSW, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
53
|
Simpson JL, Baines KJ, Horvat JC, Essilfie AT, Brown AC, Tooze M, McDonald VM, Gibson PG, Hansbro PM. COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumoniae and a deficiency of Bacillus species. Respirology 2016; 21:697-704. [PMID: 26781464 DOI: 10.1111/resp.12734] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/03/2015] [Accepted: 11/22/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation and inflammation. Airway bacterial colonization is increased in COPD; however, the role of potentially pathogenic and non-pathogenic bacteria in the pathogenesis of disease is unclear. This study characterized the presence of bacteria in a well-characterized cohort of adults with COPD and healthy controls. METHODS Adults with COPD (n = 70) and healthy controls (n = 51) underwent clinical assessment and sputum induction. Sputum was dispersed, and total and differential cell counts were performed. Bacteria were cultured, identified and enumerated. Supernatants were assessed for neutrophil elastase (NE) and IL-1β. Common respiratory pathogens were also determined using real-time PCR. RESULTS Participants with COPD had a typical neutrophilic inflammatory profile. The total load of bacteria was increased in COPD and was associated with poorer respiratory health status, as measured by the St George's Respiratory Questionnaire (Spearman's r = 0.336, P = 0.013). Significantly lower levels of culturable Bacillus species were identified compared with healthy controls. PCR analyses revealed increased rates of detection of potentially pathogenic bacteria with Haemophilus influenzae detection associated with higher sputum levels of NE and IL-1β, while Streptococcus pneumoniae was more common in male ex-smokers with emphysema and a deficit in diffusion capacity. CONCLUSION Non-pathogenic and pathogenic bacteria were altered in the sputum of patients with COPD. These observations highlight the potential to identify treatment and management strategies that both target specific bacterial pathogens and restore the microbial balance, which may lead to reductions in inflammation and subsequent improvements in lung health.
Collapse
Affiliation(s)
- Jodie L Simpson
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Katherine J Baines
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jay C Horvat
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandra C Brown
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Melinda Tooze
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Vanessa M McDonald
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter G Gibson
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Philip M Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
54
|
Tay HL, Kaiko GE, Plank M, Li J, Maltby S, Essilfie AT, Jarnicki A, Yang M, Mattes J, Hansbro PM, Foster PS. Correction: Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung. PLoS Pathog 2015; 11:e1004956. [PMID: 26107387 PMCID: PMC4479355 DOI: 10.1371/journal.ppat.1004956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|