51
|
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.03089-20. [PMID: 33771779 DOI: 10.1128/aem.03089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause problematic infections at different sites throughout the human body. P. aeruginosa encodes a large suite of over 60 two-component signaling systems that enable cells to rapidly sense and respond to external signals. Previous work has shown that some of these sensory systems contribute to P. aeruginosa pathogenesis, but the virulence-associated processes and phenotypic traits that each of these systems controls are still largely unclear. To aid investigations of these sensory systems, we have generated deletion strains for each of 64 genes encoding histidine kinases and one histidine phosphotransferase in P. aeruginosa PA14. We carried out initial phenotypic characterizations of this collection by assaying these mutants for over a dozen virulence-associated traits, and we found that each of these phenotypes is regulated by multiple sensory systems. Our work highlights the usefulness of this collection for further studies of P. aeruginosa two-component signaling systems and provides insight into how these systems may contribute to P. aeruginosa infection.IMPORTANCE Pseudomonas aeruginosa can grow and survive under a wide range of conditions, including as a human pathogen. As such, P. aeruginosa must be able to sense and respond to diverse signals and cues in its environment. This sensory capability is endowed in part by the hundreds of two-component signaling proteins encoded in the P. aeruginosa genome, but the precise roles of each remain poorly defined. To facilitate systematic study of the signaling repertoire of P. aeruginosa PA14, we generated a library of deletion strains, each lacking one of the 64 histidine kinases. By subjecting these strains to a battery of phenotypic assays, we confirmed the functions of many and unveiled roles for dozens of previously uncharacterized histidine kinases in controlling various traits, many of which are associated with P. aeruginosa virulence. Thus, this work provides new insight into the functions of two-component signaling proteins and provides a resource for future investigations.
Collapse
|
52
|
Xiao Y, Nie L, Chen H, He M, Liang Q, Nie H, Chen W, Huang Q. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ Microbiol 2021; 23:5239-5257. [PMID: 33938113 DOI: 10.1111/1462-2920.15555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhe Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
53
|
Zhang H, Wang H, Ma Z, Liu Y, Wu Z, Xu H, Qiao M. Characterization of Proteus vulgaris Strain P3M, a Foodborne Multidrug-Resistant Bacterium Isolated from Penaeus vannamei in China. Microb Drug Resist 2021; 27:1360-1370. [PMID: 33877915 DOI: 10.1089/mdr.2020.0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteus vulgaris is an important foodborne opportunistic pathogen, both environmentally and clinically. The use of appropriate antibiotics has significant therapeutic effects, but has led to the emergence and spread of drug-resistant strains. In this study, a P. vulgaris strain, designated "P3M," was isolated from Penaeus vannamei in Tianjin, China. The whole genome of P3M was sequenced, generating detailed information, including the key genes involved in important metabolic pathways and their physiological functions. A total of 218 antibiotic resistance genes (ARGs) were predicted in the genome. The determination of various minimum inhibitory concentrations indicated that P3M is a multidrug-resistant (MDR) bacterium, with significant resistance to 16 antibiotics in seven categories. Determination of fractional inhibitory concentration index showed that the combination of ciprofloxacin plus tetracycline exhibited synergistic antimicrobial activity. Bioinformatics and phylogenetic analyses detected the presence of two two-component systems that mediate multidrug resistance and several mobile genetic elements involved in the horizontal transfer of ARGs in P3M. P. vulgaris strains represent a serious challenge to clinicians and infection control teams for its ubiquity worldwide and close relevance with human life. To the best of our knowledge, we report the first isolation and characterization of an important foodborne MDR P. vulgaris strain, and this study will provide necessary theoretical basis for the selection and clinical use of the appropriate antibiotics.
Collapse
Affiliation(s)
- Hongyang Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hesuiyuan Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
54
|
Full pathogen characterisation: species identification including the detection of virulence factors and antibiotic resistance genes via multiplex DNA-assays. Sci Rep 2021; 11:6001. [PMID: 33727586 PMCID: PMC7966752 DOI: 10.1038/s41598-021-85438-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistances progressively cause treatment failures, and their spreading dynamics reached an alarming level. Some strains have already been classified as highly critical, e.g. the ones summarised by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.). To restrain this trend and enable effective medication, as much information as possible must be obtained in the least possible time. Here, we present a DNA microarray-based assay that screens for the most important sepsis-relevant 44 pathogenic species, 360 virulence factors (mediate pathogenicity in otherwise non-pathogenic strains), and 409 antibiotic resistance genes in parallel. The assay was evaluated with 14 multidrug resistant strains, including all ESKAPE pathogens, mainly obtained from clinical isolates. We used a cost-efficient ligation-based detection platform designed to emulate the highly specific multiplex detection of padlock probes. Results could be obtained within one day, requiring approximately 4 h for amplification, application to the microarray, and detection.
Collapse
|
55
|
Zhao Y, Liu J, Jiang T, Hou R, Xu G, Xu H, Liu F. Resistance-Nodulation-Division Efflux Pump, LexABC, Contributes to Self-Resistance of the Phenazine Di- N-Oxide Natural Product Myxin in Lysobacter antibioticus. Front Microbiol 2021; 12:618513. [PMID: 33679640 PMCID: PMC7927275 DOI: 10.3389/fmicb.2021.618513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jiayu Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
56
|
Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, Soleiman-Meigooni S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog 2021; 153:104789. [PMID: 33556480 DOI: 10.1016/j.micpath.2021.104789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. The present study aimed to evaluate the overexpression of RND efflux pumps and its role in the antibiotic resistance of P. aeruginosa clinical isolates. A number of 122 isolates were obtained from three military hospitals in Tehran, Iran. In order to determine the antibiotic resistance, the isolates were identified and assessed by the disk diffusion and agar dilution methods. This study investigated the gene expression of four multi-drug efflux pump systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY (-OprA)) and its correlation with antibiotic resistance. The isolates indicated that the highest resistance rate was against ticarcillin (80%), followed by ciprofloxacin (74%) and meropenem (71%). Most of them expressed mexB (69%), mexC (28.7%), mexE (43.4%), and mexY (74.6%), suggesting that mexB and mexY were highly expressed in the studied strains. The overexpression of mexB and mexY was significantly more prevalent in the ICU wards (p = 0.033). Furthermore, there was a significant correlation between the expression of RND-type efflux pumps and the resistance to most anti-pseudomonal antibiotics.
Collapse
Affiliation(s)
- Abed Zahedi Bialvaei
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Ramin Hamidi-Farahani
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Asgari
- Department of Infectious Diseases, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Aylin Esmailkhani
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
57
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
58
|
Moosavi SM, Pouresmaeil O, Zandi H, Emadi S, Akhavan F, Torki A, Astani A. The Evaluation of Antibiotic Resistance and nalB Mutants in Pseudomonas eruginosa Isolated from Burnt Patients of Shohada Mehrab Yazd Hospital Burn Ward. Rep Biochem Mol Biol 2020; 9:140-146. [PMID: 33178862 DOI: 10.29252/rbmb.9.2.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Due to extensive damage to the skin, burn victims may acquire life-threatening infections. Though the skin primarily protects against microbial invasions, a large number of bacteria, fungi, and viruses can be isolated from burn patients, specifically Pseudomonas aeruginosa, a gram-negative bacterium with both intrinsic and acquired antibiotic resistance (AR) properties. nalB mutations can be found on the mexR in the P. aeruginosa chromosome. This mutation can induce overexpression of the mexAB-oprMoperon, and affect the MexAB-OprM efflux pump, which removes antimicrobial agents from the bacterial cell. Identifying nalB mutants can be useful for monitoring factors affecting AR. Methods In this study, 70 P. aeruginosa isolates identified from burn patients and antibacterial sensitivity was evaluated using the Kirby-Bauer method. We also investigated nalB mutations in samples using molecular methods including Polymerase reaction chain (PCR) and Sequencing. Results We identified nalB mutations in 16 isolates. We also found that the increasing effect of nalB mutants induces hyper production activity of MexAB-OprM resulting in AR. Overall, these findings compliment the findings of previous reports. Conclusion According to the resistance patterns of the samples, both Amikacin and Ciprofloxacin showed the highest resistance (%). Further, the relationship between Ciprofloxacin resistance and nalB mutations was statistically significant (p= 0.016). The results confirm that the increasing effect of nalB mutants on hyper production activity of MexAB-OprM leads to AR.
Collapse
Affiliation(s)
- Seyed Morteza Moosavi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Pouresmaeil
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hengameh Zandi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Emadi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Akhavan
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Microbiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Torki
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Microbiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
59
|
Jewboonchu J, Saetang J, Saeloh D, Siriyong T, Rungrotmongkol T, Voravuthikunchai SP, Tipmanee V. Atomistic insight and modeled elucidation of conessine towards Pseudomonas aeruginosa efflux pump. J Biomol Struct Dyn 2020; 40:1480-1489. [PMID: 33025857 DOI: 10.1080/07391102.2020.1828169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-resistant Pseudomonas aeruginosa efflux pump extrudes antibiotics from cells for survival. Efflux pump inhibitor (EPI) thus becomes an interesting alternative to handle the drug-resistant bacteria. Conessine, a natural steroidal alkaloid from Holarrhena antidysenterica, previously exhibited efflux pump inhibitory potential. Our molecular docking and molecular dynamics (MD) studies provided atomistic information as well as the interaction of conessine with bacterial MexB efflux pump in phospholipid bilayer membrane to further the previous experimental report. Herein, the binding site and proposed mode of action of conessine were identified compared to known/commercial EPIs such as PAβN or designed-synthetic P9D. Our results explained conessine binding mode of action as an effective agent against the MexB efflux pump. The MD simulation also suggested that conessine was able to affect glycine loop (G-loop) flexibility, and the reduced G-loop flexibility due to conessine could hinder an antibiotics extrusion. In addition, our study suggested the conessine core structure buried in a hydrophobic region in the efflux pump similar to other known EPIs. Our finding could cope as a key for the design and development of the conessine derivative as novel EPI against P. aeruginosa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juntamanee Jewboonchu
- EZ-Mol-Design Laboratory and Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jirakrit Saetang
- EZ-Mol-Design Laboratory and Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Dennapa Saeloh
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Thanyaluck Siriyong
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, and Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Natural Product Research Center of Excellence, and Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Varomyalin Tipmanee
- EZ-Mol-Design Laboratory and Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
60
|
Beig M, Taheri M, Arabestani MR. Expression of MexAB-OprM efflux pump and OprD porin in carbapenemase producing Pseudomonas aeruginosa clinical isolates. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Cao J, Hu Y, Liu F, Wang Y, Bi Y, Lv N, Li J, Zhu B, Gao GF. Metagenomic analysis reveals the microbiome and resistome in migratory birds. MICROBIOME 2020; 8:26. [PMID: 32122398 PMCID: PMC7053137 DOI: 10.1186/s40168-019-0781-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/27/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Antibiotic-resistant pathogens pose high risks to human and animal health worldwide. In recent years, the role of gut microbiota as a reservoir of antibiotic resistance genes (ARGs) in humans and animals has been increasingly investigated. However, the structure and function of the gut bacterial community, as well as the ARGs they carry in migratory birds remain unknown. RESULTS Here, we collected samples from migratory bird species and their associated environments and characterized their gut microbiomes and resistomes using shotgun metagenomic sequencing. We found that migratory birds vary greatly in gut bacterial composition but are similar in their microbiome metabolism and function. Birds from the same environment tend to harbor similar bacterial communities. In total, 1030 different ARGs (202 resistance types) conferring resistance to tetracycline, aminoglycoside, β-lactam, sulphonamide, chloramphenicol, macrolide-lincosamide-streptogramin (MLS), and quinolone are identified. Procrustes analysis indicated that microbial community structure is not correlated with the resistome in migratory birds. Moreover, metagenomic assembly-based host tracking revealed that most of the ARG-carrying contigs originate from Proteobacteria. Co-occurrence patterns revealed by network analysis showed that emrD, emrY, ANT(6)-Ia, and tetO, the hubs of ARG type network, are indicators of other co-occurring ARG types. Compared with the microbiomes and resistomes in the environment, migratory birds harbor a lower phylogenetic diversity but have more antibiotic resistance proteins. Interestingly, we found that the mcr-1 resistance gene is widespread among different birds, accounting for 50% of the total samples. Meanwhile, a large number of novel β-lactamase genes are also reconstructed from bird metagenomic assemblies based on fARGene software. CONCLUSIONS Our study provides a comprehensive overview of the diversity and abundance of ARGs in migratory birds and highlights the possible role of migratory birds as ARG disseminators into the environment. Video abstract.
Collapse
Affiliation(s)
- Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
62
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
63
|
Guest RL, Court EA, Waldon JL, Schock KA, Raivio TL. Impaired Efflux of the Siderophore Enterobactin Induces Envelope Stress in Escherichia coli. Front Microbiol 2019; 10:2776. [PMID: 31866967 PMCID: PMC6908949 DOI: 10.3389/fmicb.2019.02776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 01/04/2023] Open
Abstract
The Cpx response is one of several envelope stress responses that monitor and maintain the integrity of the gram-negative bacterial envelope. While several conditions that are known or predicted to generate misfolded inner membrane proteins activate the Cpx response, the molecular nature of the Cpx inducing cue is not yet known. Studies have demonstrated that mutation of multidrug efflux pumps activates the Cpx response in many gram-negative bacteria. In Vibrio cholerae, pathway activation is due to accumulation of the catechol siderophore vibriobactin. However, the mechanism by which the Cpx response is activated by mutation of efflux pumps in Escherichia coli remains unknown. Here we show that inhibition of efflux by deletion of tolC, the outer membrane channel of several multidrug efflux pumps, activates the Cpx response in E. coli as a result of impaired efflux of the siderophore enterobactin. Enterobactin accumulation in the tolC mutant reduces activity of the nicotinamide adenine dinucleotide (NADH) oxidation arm of the aerobic respiratory chain. However, the Cpx pathway remains active in the tolC mutant when either NADH dehydrogenase I, NADH dehydrogenase II, or cytochrome bo3 is absent. Finally, we show that the Cpx response down-regulates transcription of the enterobactin biosynthesis operon. These results suggest that the Cpx response promotes adaptation to envelope stress in enteric bacteria that are exposed to iron-limited environments, which are rich in envelope-damaging compounds and conditions.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Emily A Court
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jayne L Waldon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kiersten A Schock
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
64
|
Cinnamaldehyde Induces Expression of Efflux Pumps and Multidrug Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01081-19. [PMID: 31383658 DOI: 10.1128/aac.01081-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023] Open
Abstract
Essential oils or their components are increasingly used to fight bacterial infections. Cinnamaldehyde (CNA), the main constituent of cinnamon bark oil, has demonstrated interesting properties in vitro against various pathogens, including Pseudomonas aeruginosa In the present study, we investigated the mechanisms and possible therapeutic consequences of P. aeruginosa adaptation to CNA. Exposure of P. aeruginosa PA14 to subinhibitory concentrations of CNA caused a strong albeit transient increase in the expression of operons that encode the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY/OprM. This multipump activation enhanced from 2- to 8-fold the resistance (MIC) of PA14 to various antipseudomonal antibiotics, including meropenem, ceftazidime, tobramycin, and ciprofloxacin. CNA-induced production of pump MexAB-OprM was found to play a major role in the adaption of P. aeruginosa to the electrophilic biocide, through the NalC regulatory pathway. CNA was progressively transformed by bacteria into the less toxic metabolite cinnamic alcohol (CN-OH), via yet undetermined detoxifying mechanisms. In conclusion, the use of cinnamon bark oil or cinnamaldehyde as adjunctive therapy to treat P. aeruginosa infections may potentially have antagonistic effects if combined with antibiotics because of Mex pump activation.
Collapse
|
65
|
Biswas R, Panja AS, Bandopadhyay R. Molecular Mechanism of Antibiotic Resistance: The Untouched Area of Future Hope. Indian J Microbiol 2019; 59:254-259. [PMID: 31031444 DOI: 10.1007/s12088-019-00781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/12/2019] [Indexed: 11/25/2022] Open
Abstract
The treatment of bacterial infections is becoming increasingly ineffective due to rapid mutation which leads to antibiotic resistant and resistant bacteria become more prevalent. As a result the existing antibiotics are gradually obsolete and again new drugs are needed to be designed for the same threat. However, the prediction of evolutionary processes/antibiotic resistance is uncertain. Still, the understanding of mode of evolution of resistance in bacteria is a determining step in the preclinical development of new antibiotics, because drug developers assess the risk of resistance arising against a drug during preclinical development. Multidrug efflux pump systems play an important role for making multidrug resistance to a range of clinically important antibiotics in gram-negative bacteria like Pseudomonas aeruginosa, which lower the intracellular drug concentration by exporting incoming antibiotics across the membranes. We tried to show that the wild type susceptible bacteria P. aeruginosa modified its genetic makeup at mutational hotspots under stress. This strain may either become multidrug resistant or remain susceptible depending on position of amino acid changes in regulatory proteins of efflux pump. Multidrug resistant strain made significant changes at the amino acid positions, 103rd (G → A) and 126th (E → V) through the mutation on the nucleotide position of 308th (G → C); both 377th (A → T) and 378th (G → T), respectively in mexR, a repressor of mexAB-oprM efflux pump. This mutant protein showed low affinity with their operator. But the alteration at 103th position (G → A) in mexR may provide almost similar structural and functional stability as wild type. It was found that mutation was seemed to be well regulated within the limit and position specific under stress which might be back to its original form by supplying counter stress unless addition or deletion takes place.
Collapse
Affiliation(s)
- Raju Biswas
- 1Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104 India
- Department of Botany, Syamsundar College, Shyamsundar, Burdwan, West Bengal 713424 India
| | - Anindya Sundar Panja
- 3Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Rajib Bandopadhyay
- 1Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104 India
| |
Collapse
|
66
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
67
|
The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol 2019; 4:504-514. [PMID: 30742072 DOI: 10.1038/s41564-018-0342-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
When choosing antibiotics to treat bacterial infections, it is assumed that the susceptibility of the target bacteria to an antibiotic is reflected by laboratory estimates of the minimum inhibitory concentration (MIC) needed to prevent bacterial growth. A caveat of using MIC data for this purpose is heteroresistance, the presence of a resistant subpopulation in a main population of susceptible cells. We investigated the prevalence and mechanisms of heteroresistance in 41 clinical isolates of the pathogens Escherichia coli, Salmonella enterica, Klebsiella pneumoniae and Acinetobacter baumannii against 28 different antibiotics. For the 766 bacteria-antibiotic combinations tested, as much as 27.4% of the total was heteroresistant. Genetic analysis demonstrated that a majority of heteroresistance cases were unstable, with an increased resistance of the subpopulations resulting from spontaneous tandem amplifications, typically including known resistance genes. Using mathematical modelling, we show how heteroresistance in the parameter range estimated in this study can result in the failure of antibiotic treatment of infections with bacteria that are classified as antibiotic susceptible. The high prevalence of heteroresistance with the potential for treatment failure highlights the limitations of MIC as the sole criterion for susceptibility determinations. These results call for the development of facile and rapid protocols to identify heteroresistance in pathogens.
Collapse
|
68
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
69
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1163] [Impact Index Per Article: 166.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
70
|
Two Regulators, PA3898 and PA2100, Modulate the Pseudomonas aeruginosa Multidrug Resistance MexAB-OprM and EmrAB Efflux Pumps and Biofilm Formation. Antimicrob Agents Chemother 2018; 62:AAC.01459-18. [PMID: 30297364 DOI: 10.1128/aac.01459-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/29/2018] [Indexed: 11/20/2022] Open
Abstract
It is generally believed that the Pseudomonas aeruginosa biofilm matrix itself acts as a molecular sieve or sink that contributes to significant levels of drug resistance, but it is becoming more apparent that multidrug efflux pumps induced during biofilm growth significantly enhance resistance levels. We present here a novel transcriptional regulator, PA3898, which controls biofilm formation and multidrug efflux pumps in P. aeruginosa A mutant of this regulator significantly reduced the ability of P. aeruginosa to produce biofilm in vitro and affected its in vivo fitness and pathogenesis in Drosophila melanogaster and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA3898 modulates essential virulence genes/pathways, including multidrug efflux pumps and phenazine biosynthesis. Chromatin immunoprecipitation sequencing (ChIP-seq) identified its DNA binding sequences and confirmed that PA3898 directly interacts with promoter regions of four genes/operons, two of which are mexAB-oprM and phz2 Coimmunoprecipitation revealed a regulatory partner of PA3898 as PA2100, and both are required for binding to DNA in electrophoretic mobility shift assays. PA3898 and PA2100 were given the names MdrR1 and MdrR2, respectively, as novel repressors of the mexAB-oprM multidrug efflux operon and activators for another multidrug efflux pump, EmrAB. The interaction between MdrR1 and MdrR2 at the promoter regions of their regulons was further characterized via localized surface plasmon resonance and DNA footprinting. These regulators directly repress the mexAB-oprM operon, independent of its well-established MexR regulator. Mutants of mdrR1 and mdrR2 caused increased resistance to multiple antibiotics in P. aeruginosa, validating the significance of these newly discovered regulators.
Collapse
|
71
|
Mechaly AE, Haouz A, Sassoon N, Buschiazzo A, Betton JM, Alzari PM. Conformational plasticity of the response regulator CpxR, a key player in Gammaproteobacteria virulence and drug-resistance. J Struct Biol 2018; 204:165-171. [DOI: 10.1016/j.jsb.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
|
72
|
Aminoglycoside-inducible expression of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Involvement of the envelope stress-responsive AmgRS two-component system. PLoS One 2018; 13:e0205036. [PMID: 30289929 PMCID: PMC6173428 DOI: 10.1371/journal.pone.0205036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Exposure of P. aeruginosa to the aminoglycoside (AG) paromomycin (PAR) induced expression of the PA3720-armR locus and the mexAB-oprM multidrug efflux operon that AmgR controls, although PAR induction of mexAB-oprM was independent of armR. Multiple AGs promoted mexAB-oprM expression and this was lost in the absence of the amgRS locus encoding an aminoglycoside-activated envelope stress-responsive 2-component system (TCS). Purified AmgR bound to the mexAB-oprM promoter region consistent with this response regulator directly regulating expression of the efflux operon. The thiol-active reagent, diamide, which, like AGs, promotes protein aggregation and cytoplasmic membrane damage also promoted AmgRS-dependent mexAB-oprM expression, a clear indication that the MexAB-OprM efflux system is recruited in response to membrane perturbation and/or circumstances that lead to this. Despite the AG and diamide induction of mexAB-oprM, however, MexAB-OprM does not appear to contribute to resistance to these agents.
Collapse
|
73
|
Dean CR, Barkan DT, Bermingham A, Blais J, Casey F, Casarez A, Colvin R, Fuller J, Jones AK, Li C, Lopez S, Metzger LE, Mostafavi M, Prathapam R, Rasper D, Reck F, Ruzin A, Shaul J, Shen X, Simmons RL, Skewes-Cox P, Takeoka KT, Tamrakar P, Uehara T, Wei JR. Mode of Action of the Monobactam LYS228 and Mechanisms Decreasing In Vitro Susceptibility in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:e01200-18. [PMID: 30061293 PMCID: PMC6153799 DOI: 10.1128/aac.01200-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The monobactam scaffold is attractive for the development of new agents to treat infections caused by drug-resistant Gram-negative bacteria because it is stable to metallo-β-lactamases (MBLs). However, the clinically used monobactam aztreonam lacks stability to serine β-lactamases (SBLs) that are often coexpressed with MBLs. LYS228 is stable to MBLs and most SBLs. LYS228 bound purified Escherichia coli penicillin binding protein 3 (PBP3) similarly to aztreonam (derived acylation rate/equilibrium dissociation constant [k2/Kd ] of 367,504 s-1 M-1 and 409,229 s-1 M-1, respectively) according to stopped-flow fluorimetry. A gel-based assay showed that LYS228 bound mainly to E. coli PBP3, with weaker binding to PBP1a and PBP1b. Exposing E. coli cells to LYS228 caused filamentation consistent with impaired cell division. No single-step mutants were selected from 12 Enterobacteriaceae strains expressing different classes of β-lactamases at 8× the MIC of LYS228 (frequency, <2.5 × 10-9). At 4× the MIC, mutants were selected from 2 of 12 strains at frequencies of 1.8 × 10-7 and 4.2 × 10-9 LYS228 MICs were ≤2 μg/ml against all mutants. These frequencies compared favorably to those for meropenem and tigecycline. Mutations decreasing LYS228 susceptibility occurred in ramR and cpxA (Klebsiella pneumoniae) and baeS (E. coli and K. pneumoniae). Susceptibility of E. coli ATCC 25922 to LYS228 decreased 256-fold (MIC, 0.125 to 32 μg/ml) after 20 serial passages. Mutants accumulated mutations in ftsI (encoding the target, PBP3), baeR, acrD, envZ, sucB, and rfaI These results support the continued development of LYS228, which is currently undergoing phase II clinical trials for complicated intraabdominal infection and complicated urinary tract infection (registered at ClinicalTrials.gov under identifiers NCT03377426 and NCT03354754).
Collapse
Affiliation(s)
- Charles R Dean
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - David T Barkan
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Fergal Casey
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Anthony Casarez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Richard Colvin
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - John Fuller
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Adriana K Jones
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Cindy Li
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Sara Lopez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Louis E Metzger
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Mina Mostafavi
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Ramadevi Prathapam
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alexey Ruzin
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Robert L Simmons
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Peter Skewes-Cox
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Kenneth T Takeoka
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Pramila Tamrakar
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Tsuyoshi Uehara
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| |
Collapse
|
74
|
Rezaie P, Pourhajibagher M, Chiniforush N, Hosseini N, Bahador A. The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress. J Lasers Med Sci 2018; 9:161-167. [PMID: 30809326 DOI: 10.15171/jlms.2018.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resistant infections essentially cause mortality in a burn unit. Several bacteria contribute to burn infections; among these, Pseudomonas aeruginosa majorly contributes to these infections revealing significant drug resistance. Similar to other bacteria, P. aeruginosa reveals various mechanisms to attain highest pathogenicity and resistance; among these, efflux pumps and quorum sensing are crucial. Quorum sensing enables effective communication between bacteria and synchronizes their gene expression resulting in optimum effect of the secreted proteins; alternatively, efflux pumps increase the bacterial resistance by pumping out the antimicrobial factors as well as the QS signals and precursors. Of recent, increasing episodes of drug resistance led to new findings and approaches for killing pathogenic bacteria without inducing the drug-resistant species. Photodynamic therapy (PDT), considered as an adjuvant and innovative method for conventional antibiotic therapy, is a photochemical reaction that includes visible light, oxygen, and a photosensitizer (PS). In this therapy, after exposure to visible light, the PS generates reactive oxygen species (ROS) that are bacteriostatic or bactericidal. Furthermore, this oxidative stress can disrupt the coordination of gene expression and alter the bacterial behavior. Considering the fact that the adaption and several gene expression patterns of microorganisms within the biofilm make them notably resistant to the recent antimicrobial treatments, this study aimed to emphasize the relationship between the efflux pump and QS under oxidative stress and their role in P. aeruginosa's reaction to PDT.
Collapse
Affiliation(s)
- Parizad Rezaie
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry (LRCD), Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
75
|
Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyperexpressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018; 34:83. [DOI: 10.1007/s11274-018-2465-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
|
76
|
Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production. mSphere 2018; 3:3/2/e00155-18. [PMID: 29669887 PMCID: PMC5907650 DOI: 10.1128/msphere.00155-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCEPseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection.
Collapse
|
77
|
Li H, Liu F, Peng W, Yan K, Zhao H, Liu T, Cheng H, Chang P, Yuan F, Chen H, Bei W. The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2018; 8:72. [PMID: 29662838 PMCID: PMC5890194 DOI: 10.3389/fcimb.2018.00072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria have evolved numerous two-component systems (TCSs) to cope with external environmental changes. The CpxA/CpxR TCS consisting of the kinase CpxA and the regulator CpxR, is known to be involved in the biofilm formation and virulence of Escherichia coli. However, the role of CpxA/CpxR remained unclear in Actinobacillus pleuropneumoniae, a bacterial pathogen that can cause porcine contagious pleuropneumonia (PCP). In this report, we show that CpxA/CpxR contributes to the biofilm formation ability of A. pleuropneumoniae. Furthermore, we demonstrate that CpxA/CpxR plays an important role in the expression of several biofilm-related genes in A. pleuropneumoniae, such as rpoE and pgaC. Furthermore, The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting analysis demonstrate that CpxR-P can regulate the expression of the pgaABCD operon through rpoE. In an experimental infection of mice, the animals infected with a cpxA/cpxR mutant exhibited delayed mortality and lower bacterial loads in the lung than those infected with the wildtype bacteria. In conclusion, these results indicate that the CpxA/CpxR TCS plays a contributing role in the biofilm formation and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Haixu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Peixi Chang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
78
|
Nguyen KV, Nguyen TV, Nguyen HTT, Le DV. Mutations in the gyrA, parC, and mexR genes provide functional insights into the fluoroquinolone-resistant Pseudomonas aeruginosa isolated in Vietnam. Infect Drug Resist 2018. [PMID: 29535543 PMCID: PMC5836672 DOI: 10.2147/idr.s147581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Pseudomonas aeruginosa has many mechanisms of resistance to fluoroquinolones. The main mechanism is to change the effect of two enzymes that open the DNA helix - the enzyme DNA gyrase (gyrA) and the topoisomerase IV (parC). In addition, mutations that render the MexAB-oprM pump (mexR) dysfunctional, leading to its overexpression, also enhance resistance to fluoroquinolones. In this study, we aim to detect point mutations of gyrA, parC, and mexR genes that are predicted to be associated with fluoroquinolone resistance in 141 fluoroquinolone-resistant clinical isolates of P. aeruginosa isolated in Vietnam during 2013-2016. Methods We tested minimum inhibitory concentrations (MICs) of fluoroquinolone antibiotics in 141 clinical isolates of P. aeruginosa using the VITEK 2 Compact System, followed by PCR assay, to detect and clone the fluoroquinolone resistance-determining region (FRDR) of gyrA, parC, and mexR. Point mutations were analyzed through Sanger sequencing, and the correlation between genetic mutations and phenotypic resistance of 141 clinical isolates was undertaken. Results Fluoroquinolone-resistant substitution mutations such as Ile for Thr83 and Met for Thr133 in gyrA, Leu for Ser87 in parC, and Val for Glu126 in the repressor of mexR were mainly detected. Comparative analytical data indicated that amino acid alterations within the gyrA and parC genes are highly associated with resistance to ciprofloxacin (CIP) and levofloxacin (LEV) in the isolates, whereas alterations in the efflux regulatory mexR gene are not highly consistent with resistance in these isolates. Moreover, fluoroquinolone-resistant clinical isolates of P. aeruginosa were mainly isolated from pus and sputum specimens. Conclusion In clinical isolates of P. aeruginosa, a high correlation was observed between MICs of CIP and LEV and alterations in gyrA and parC genes. However, mutations occurring in mexR did not highly correlate with the antibiotic resistance of the bacterium.
Collapse
Affiliation(s)
- Kinh Van Nguyen
- Clinical Laboratories, National Hospital for Tropical Diseases.,Infectious Department, Hanoi Medical University
| | - Trung Vu Nguyen
- Clinical Laboratories, National Hospital for Tropical Diseases.,Microbiology Department, Hanoi Medical University
| | | | - Duyet Van Le
- Clinical Laboratories, National Hospital for Tropical Diseases
| |
Collapse
|
79
|
Lin L, Sun L, Ali F, Guo Z, Zhang L, Lin W, Lin X. Proteomic Analysis of Alterations in Aeromonas hydrophila Outer Membrane Proteins in Response to Oxytetracycline Stress. Microb Drug Resist 2018; 24:1067-1074. [PMID: 29356594 DOI: 10.1089/mdr.2017.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Gram-negative bacteria, the outer membrane proteins (OMPs) perform a crucial role in antibiotic resistance, but it is largely unknown how they behave in response to antibiotic stress. In this study, we treated Aeromonas hydrophila with two different doses of oxytetracycline (OXY) to induce antibiotic stress. Proteins were isolated from sarcosine-insoluble fractions and quantitatively examined by using tandem mass tag labeling-based mass spectrometry to identify differentially expressed proteins. As a result, we identified 125 differential proteins in the 5 μg/ml OXY treatment group, including 20 OMPs, and 150 proteins from the 10 μg/ml OXY group, including 22 OMPs. Gene ontology analysis showed that translation-related proteins, including 30S and 50S ribosome proteins, were significantly enriched in increasing abundance under OXY stress; whereas the downregulated proteins were associated with the transport process, such as maltodextrin, maltose, and oligosaccharide transport. We then validated a subset of the identified differential proteins by using Western blot and quantitative polymerase chain reaction analyses. Finally, the quantitative real-time PCR (qPCR) results showed that at the transcription level, the expression of five OMP genes, including AHA_1280 (protein name A0KHS0), AHA_1281 (A0KHS1), AHA_1447 (A0KI84, BamE), AHA_1861 (A0KJE1), and AHA_2766 (A0KLX3), and one lipoprotein gene AHA_1740 (A0KJ25) was consistent with proteomic results under 5 and 10 μg/ml OXY treatment, respectively. In addition, the Western blotting also demonstrated that two altered OMP proteins A0KHS1 and A0KHH2 were upregulated for both OXY treatment groups. This study indicates that bacteria regulate the expression levels of OMPs in response to antibiotic stress and further contribute to our understanding of the functions of OMPs in antibiotic resistance. Moreover, our results suggest that the upregulation of translation and downregulation of the transport process may affect bacterial fitness during OXY stress. These findings may provide new clues to the antibiotic resistance mechanism in A. hydrophila.
Collapse
Affiliation(s)
- Ling Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Lina Sun
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Farman Ali
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Zhuang Guo
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Liang Zhang
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Wenxiong Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| | - Xiangmin Lin
- 1 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
- 2 Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University , Fuzhou, People's Republic of China
| |
Collapse
|
80
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
81
|
Haenni M, Bour M, Châtre P, Madec JY, Plésiat P, Jeannot K. Resistance of Animal Strains of Pseudomonas aeruginosa to Carbapenems. Front Microbiol 2017; 8:1847. [PMID: 29033910 PMCID: PMC5626926 DOI: 10.3389/fmicb.2017.01847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are major antibiotics reserved to human medicine. This study aimed to investigate the mechanisms of carbapenem resistance of a selection of Pseudomonas aeruginosa veterinary strains from the French network Resapath. Thirty (5.7%) imipenem and/or meropenem non-susceptible P. aeruginosa of canine (n = 24), feline (n = 5), or bovine (n = 1) origin were identified in a large collection of 527 veterinary strains gathered by the Resapath. These resistant isolates belonged to 25 MultiLocus Sequence Types (MLST), of which 17 (68%) are shared with clinical (human) strains, such as high risk clones ST233 and ST395. Interestingly, none of the veterinary strains produced a carbapenemase, and only six of them (20%) harbored deletions or insertion sequence (IS) disrupting the porin OprD gene. The remaining 24 strains contained mutations or IS in various loci resulting in down-regulation of gene oprD coupled with upregulation of efflux system CzcCBA (n = 3; activation of sensor kinase CzcS ± CopS), MexEF-OprN (n = 4; alteration of oxido reductase MexS), MexXY (n = 8; activation of two-component system ParRS), or MexAB-OprM (n = 12; alteration of regulator MexR, NalC ± NalD). Two efflux pumps were co-produced simultaneously in three mutants. Finally, in 11 out of 12 strains displaying an intact porin OprD, derepression of MexAB-OprM accounted for a decreased susceptibility to meropenem relative to imipenem. Though not treated by carbapenems, animals thus represent a reservoir of multidrug resistant P. aeruginosa strains potentially able to contaminate fragile outpatients.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Katy Jeannot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| |
Collapse
|
82
|
Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. mBio 2017; 8:mBio.01357-17. [PMID: 28874476 PMCID: PMC5587915 DOI: 10.1128/mbio.01357-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The trimethoprim and sulfamethoxazole combination, co-trimoxazole, plays a vital role in the treatment of Burkholderia pseudomallei infections. Previous studies demonstrated that the B. pseudomallei BpeEF-OprC efflux pump confers widespread trimethoprim resistance in clinical and environmental isolates, but this is not accompanied by significant resistance to co-trimoxazole. Using the excluded select-agent strain B. pseudomallei Bp82, we now show that in vitro acquired trimethoprim versus co-trimoxazole resistance is mainly mediated by constitutive BpeEF-OprC expression due to bpeT mutations or by BpeEF-OprC overexpression due to bpeS mutations. Mutations in bpeT affect the carboxy-terminal effector-binding domain of the BpeT LysR-type activator protein. Trimethoprim resistance can also be mediated by dihydrofolate reductase (FolA) target mutations, but this occurs rarely unless BpeEF-OprC is absent. BpeS is a transcriptional regulator that is 62% identical to BpeT. Mutations affecting the BpeS DNA-binding or carboxy-terminal effector-binding domains result in constitutive BpeEF-OprC overexpression, leading to trimethoprim and sulfamethoxazole efflux and thus to co-trimoxazole resistance. The majority of laboratory-selected co-trimoxazole-resistant mutants often also contain mutations in folM, encoding a pterin reductase. Genetic analyses of these mutants established that both bpeS mutations and folM mutations contribute to co-trimoxazole resistance, although the exact role of folM remains to be determined. Mutations affecting bpeT, bpeS, and folM are common in co-trimoxazole-resistant clinical isolates, indicating that mutations affecting these genes are clinically significant. Co-trimoxazole resistance in B. pseudomallei is a complex phenomenon, which may explain why resistance to this drug is rare in this bacterium. Burkholderia pseudomallei causes melioidosis, a tropical disease that is difficult to treat. The bacterium’s resistance to antibiotics limits therapeutic options. The paucity of orally available drugs further complicates therapy. The oral drug of choice is co-trimoxazole, a combination of trimethoprim and sulfamethoxazole. These antibiotics target two distinct enzymes, FolA (dihydrofolate reductase) and FolP (dihydropteroate synthase), in the bacterial tetrahydrofolate biosynthetic pathway. Although co-trimoxazole resistance is minimized due to two-target inhibition, bacterial resistance due to folA and folP mutations does occur. Co-trimoxazole resistance in B. pseudomallei is rare and has not yet been studied. Co-trimoxazole resistance in this bacterium employs a novel strategy involving differential regulation of BpeEF-OprC efflux pump expression that determines the drug resistance profile. Contributing are mutations affecting folA, but not folP, and folM, a folate pathway-associated gene whose function is not yet well understood and which has not been previously implicated in folate inhibitor resistance in clinical isolates.
Collapse
|
83
|
|
84
|
Hall CW, Zhang L, Mah TF. PA3225 Is a Transcriptional Repressor of Antibiotic Resistance Mechanisms in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:e02114-16. [PMID: 28584154 PMCID: PMC5527654 DOI: 10.1128/aac.02114-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/21/2017] [Indexed: 11/24/2022] Open
Abstract
The tssABC1 locus is part of the Hcp secretion island I (HSI-I) type VI secretion system (T6SS) in Pseudomonas aeruginosa Previous work implicated the tssC1 gene in P. aeruginosa biofilm-specific antibiotic resistance, and tssC1 is preferentially expressed in biofilms compared to planktonic cells. Using a DNA-dependent protein pulldown approach, we discovered that PA3225, an uncharacterized LysR-type transcriptional regulator, specifically bound to the tssABC1 upstream regulatory region. The deletion of PA3225 led to a 2-fold decrease in tssA1 expression levels in planktonic cells compared to the wild type, and tssA1 expression was slightly reduced in ΔPA3225 biofilms compared to wild-type biofilms. Intriguingly, further investigations revealed that the ΔPA3225 mutant was less susceptible to multiple, structurally unrelated antibiotics with various mechanisms of action when grown planktonically. The ΔPA3225 mutant was additionally more resistant to ciprofloxacin when grown in a biofilm. The decreased antibiotic susceptibility of the ΔPA3225 strain was linked to the transcriptional upregulation of the MexAB-OprM efflux pump. By using transcriptome sequencing (RNA-seq), other PA3225-regulated genes were identified, and the products of these genes, such as the putative ABC transporter PA3228, may also contribute to antibiotic resistance.
Collapse
Affiliation(s)
- Clayton W Hall
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Li Zhang
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|