51
|
Qiao J, Lv Y, Cao C, Wang Z, Li A. Multivariate Deep Learning Classification of Alzheimer's Disease Based on Hierarchical Partner Matching Independent Component Analysis. Front Aging Neurosci 2018; 10:417. [PMID: 30618723 PMCID: PMC6304436 DOI: 10.3389/fnagi.2018.00417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Machine learning and pattern recognition have been widely investigated in order to look for the biomarkers of Alzheimer’s disease (AD). However, most existing methods extract features by seed-based correlation, which not only requires prior information but also ignores the relationship between resting state functional magnetic resonance imaging (rs-fMRI) voxels. In this study, we proposed a deep learning classification framework with multivariate data-driven based feature extraction for automatic diagnosis of AD. Specifically, a three-level hierarchical partner matching independent components analysis (3LHPM-ICA) approach was proposed first in order to address the issues in spatial individual ICA, including the uncertainty of the numbers of components, the randomness of initial values, and the correspondence of ICs of multiple subjects, resulting in stable and reliable ICs which were applied as the intrinsic brain functional connectivity (FC) features. Second, Granger causality (GC) was utilized to infer directional interaction between the ICs that were identified by the 3LHPM-ICA method and extract the effective connectivity features. Finally, a deep learning classification framework was developed to distinguish AD from controls by fusing the functional and effective connectivities. A resting state fMRI dataset containing 34 AD patients and 34 normal controls (NCs) was applied to the multivariate deep learning platform, leading to a classification accuracy of 95.59%, with a sensitivity of 97.06% and a specificity of 94.12% with leave-one-out cross validation (LOOCV). The experimental results demonstrated that the measures of neural connectivities of ICA and GC followed by deep learning classification represented the most powerful methods of distinguishing AD clinical data from NCs, and these aberrant brain connectivities might serve as robust brain biomarkers for AD. This approach also allows for expansion of the methodology to classify other psychiatric disorders.
Collapse
Affiliation(s)
- Jianping Qiao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Data Science and Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chongfeng Cao
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Zhishun Wang
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
52
|
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Int J Neural Syst 2018; 28:1850022. [DOI: 10.1142/s0129065718500223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.
Collapse
Affiliation(s)
- Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Spain
| | - Xiaoyi Jiang
- Department of Computer Science, University of Munster, Germany
| | - Antonio Carrillo
- Department of Computer Architecture and Computer Technology, University of Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, CITIC-UGR, University of Granada, Spain
| |
Collapse
|
53
|
Fang C, Li C, Cabrerizo M, Barreto A, Andrian J, Rishe N, Loewenstein D, Duara R, Adjouadi M. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer’s Disease. Int J Neural Syst 2018; 28:1850017. [DOI: 10.1142/s012906571850017x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
Collapse
Affiliation(s)
- Chen Fang
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Chunfei Li
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Armando Barreto
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Jean Andrian
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Naphtali Rishe
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - David Loewenstein
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| |
Collapse
|
54
|
Zhang H, Zhu F, Dodge HH, Higgins GA, Omenn GS, Guan Y. A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease. Gigascience 2018; 7:5052206. [PMID: 30010762 PMCID: PMC6054197 DOI: 10.1093/gigascience/giy085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/15/2018] [Accepted: 06/28/2018] [Indexed: 01/17/2023] Open
Abstract
Motivation Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging. Results We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.
Collapse
Affiliation(s)
- Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
| | - Fan Zhu
- Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, China 400714
| | - Hiroko H Dodge
- Michigan Alzheimer's Disease Center, University of Michigan, 2101 Commonwealth Blvd, Ann Arbor, MI, USA 48105
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center SPC 5316, Ann Arbor, MI, USA 48109
- Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, L226, Portland, OR, USA 97239
| | - Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
- Department of Internal Medicine, University of Michigan, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, USA 48109
- Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI, USA 48109
- School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA 48109
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, 2017G Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, USA 48109
- Department of Internal Medicine, University of Michigan, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, USA 48109
- Department of Electronic Engineering and Computer Science, Bob and Betty Beyster Building, 2260 Hayward Street, University of Michigan, Ann Arbor, MI, USA 48109
| | | |
Collapse
|
55
|
López-Sanz D, Garcés P, Álvarez B, Delgado-Losada ML, López-Higes R, Maestú F. Network Disruption in the Preclinical Stages of Alzheimer’s Disease: From Subjective Cognitive Decline to Mild Cognitive Impairment. Int J Neural Syst 2017; 27:1750041. [DOI: 10.1142/s0129065717500411] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a preclinical stage of Alzheimer’s Disease (AD) previous to mild cognitive impairment (MCI). However, the course of network disruption in these stages is scarcely characterized. Methods: We employed resting state magnetoencephalography in the source space to calculate network smallworldness, clustering, modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions were compared between groups. Results: The MCI group exhibited decreased smallworldness, clustering and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in modular partition variability in both SCD and MCI in theta and beta bands. Conclusion: SCD elders exhibit a significant network disruption, showing intermediate values between HC and MCI groups in multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting and suggest that network disorganization in AD could start in the preclinical stages before the onset of cognitive symptoms.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Pilar Garcés
- Laboratory of Cognitive Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
| | - Blanca Álvarez
- Memory Decline Prevention Center Madrid Salud, Ayuntamiento de Madrid 28006, Spain
| | | | - Ramón López-Higes
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| |
Collapse
|
56
|
Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal Discrimination of Schizophrenia Using Hybrid Weighted Feature Concatenation of Brain Functional Connectivity and Anatomical Features with an Extreme Learning Machine. Front Neuroinform 2017; 11:59. [PMID: 28943848 PMCID: PMC5596100 DOI: 10.3389/fninf.2017.00059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Multimodal features of structural and functional magnetic resonance imaging (MRI) of the human brain can assist in the diagnosis of schizophrenia. We performed a classification study on age, sex, and handedness-matched subjects. The dataset we used is publicly available from the Center for Biomedical Research Excellence (COBRE) and it consists of two groups: patients with schizophrenia and healthy controls. We performed an independent component analysis and calculated global averaged functional connectivity-based features from the resting-state functional MRI data for all the cortical and subcortical anatomical parcellation. Cortical thickness along with standard deviation, surface area, volume, curvature, white matter volume, and intensity measures from the cortical parcellation, as well as volume and intensity from sub-cortical parcellation and overall volume of cortex features were extracted from the structural MRI data. A novel hybrid weighted feature concatenation method was used to acquire maximal 99.29% (P < 0.0001) accuracy which preserves high discriminatory power through the weight of the individual feature type. The classification was performed by an extreme learning machine, and its efficiency was compared to linear and non-linear (radial basis function) support vector machines, linear discriminant analysis, and random forest bagged tree ensemble algorithms. This article reports the predictive accuracy of both unimodal and multimodal features after 10-by-10-fold nested cross-validation. A permutation test followed the classification experiment to assess the statistical significance of the classification results. It was concluded that, from a clinical perspective, this feature concatenation approach may assist the clinicians in schizophrenia diagnosis.
Collapse
Affiliation(s)
- Muhammad Naveed Iqbal Qureshi
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Jooyoung Oh
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Dongrae Cho
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Boreom Lee
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| |
Collapse
|
57
|
Abstract
This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.
Collapse
Affiliation(s)
- Jon delEtoile
- 1 Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hojjat Adeli
- 2 Departments of Biomedical Engineering, Biomedical Informatics, Neurological Surgery, and Neuroscience, and Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
58
|
Mirzaei G, Adeli H. Resting state functional magnetic resonance imaging processing techniques in stroke studies. Rev Neurosci 2016; 27:871-885. [DOI: 10.1515/revneuro-2016-0052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/01/2016] [Indexed: 01/15/2023]
Abstract
AbstractIn recent years, there has been considerable research interest in the study of brain connectivity using the resting state functional magnetic resonance imaging (rsfMRI). Studies have explored the brain networks and connection between different brain regions. These studies have revealed interesting new findings about the brain mapping as well as important new insights in the overall organization of functional communication in the brain network. In this paper, after a general discussion of brain networks and connectivity imaging, the brain connectivity and resting state networks are described with a focus on rsfMRI imaging in stroke studies. Then, techniques for preprocessing of the rsfMRI for stroke patients are reviewed, followed by brain connectivity processing techniques. Recent research on brain connectivity using rsfMRI is reviewed with an emphasis on stroke studies. The authors hope this paper generates further interest in this emerging area of computational neuroscience with potential applications in rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- 1Department of Computer Science and Engineering, The Ohio State University, Marion, OH 43302, United States of America
| | - Hojjat Adeli
- 2Department of Biomedical Engineering, Biomedical Informatics, Neurology, Neuroscience, Electrical and Computer Engineering, Civil and Environmental Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|