51
|
Pachaiyappan B, Woster PM. Design of small molecule epigenetic modulators. Bioorg Med Chem Lett 2013; 24:21-32. [PMID: 24300735 DOI: 10.1016/j.bmcl.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described.
Collapse
Affiliation(s)
- Boobalan Pachaiyappan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States.
| |
Collapse
|
52
|
Franci G, Casalino L, Petraglia F, Miceli M, Menafra R, Radic B, Tarallo V, Vitale M, Scarfò M, Pocsfalvi G, Baldi A, Ambrosino C, Zambrano N, Patriarca E, De Falco S, Minchiotti G, Stunnenberg HG, Altucci L. The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biol Open 2013; 2:1070-7. [PMID: 24167717 PMCID: PMC3798190 DOI: 10.1242/bio.20135587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/08/2023] Open
Abstract
Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS-275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.
Collapse
Affiliation(s)
- Gianluigi Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli , Vico L. De Crecchio 7, 80138 Napoli , Italy ; Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences , 6500 HB Nijmegen , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 2013; 57:1619-29. [DOI: 10.1002/mnfr.201300201] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy; Seoul National University; Seoul Korea
| |
Collapse
|
54
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
55
|
A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One 2013; 8:e54463. [PMID: 23349897 PMCID: PMC3549978 DOI: 10.1371/journal.pone.0054463] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/11/2012] [Indexed: 01/31/2023] Open
Abstract
The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories.
Collapse
|
56
|
Design, synthesis and bioevalution of novel benzamides derivatives as HDAC inhibitors. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.10.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
57
|
Russo D, Durante C, Bulotta S, Puppin C, Puxeddu E, Filetti S, Damante G. Targeting histone deacetylase in thyroid cancer. Expert Opin Ther Targets 2012; 17:179-93. [DOI: 10.1517/14728222.2013.740013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Holmlund T, Lindberg MJ, Grander D, Wallberg AE. GCN5 acetylates and regulates the stability of the oncoprotein E2A-PBX1 in acute lymphoblastic leukemia. Leukemia 2012; 27:578-85. [PMID: 23044487 DOI: 10.1038/leu.2012.265] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The t(1;19) translocation in pediatric pre-B-cell acute lymphoblastic leukemia (ALL) fuses the genes, which encode the transcriptional activator E2A and homeobox pre-B-cell leukemia transcription factor 1 (PBX1), resulting in expression of the chimeric transcription factor E2A-PBX1. E2A-PBX1 can promote cell transformation both in vitro and in vivo; however, the mechanisms by which E2A-PBX1 contributes to malignancy merit further investigation. In the current work we report, for the first time, a physical and functional interaction between the SPT3-TAFII31-GCN5L acetylase (STAGA) complex and E2A-PBX1. STAGA, and its acetyltransferase subunit GCN5, directly interacted with the E2A portion of E2A-PBX1. GCN5 acetylated E2A-PBX1 and increased the stability of E2A-PBX1 protein in cells. Moreover, the GCN5 inhibitor α-methylene-γ-butyrolactone 3 (MB-3) decreased E2A-PBX1 acetylation and E2A-PBX1 protein levels in leukemic cells, indicating that GCN5 inhibitors have potential value as therapeutic agents for ALL. In addition, we show that the E3 ubiquitin ligase HDM2 potentiates the degradation of E2A-PBX1. We suggest that dynamic regulation of E2A-PBX1 protein levels in vivo has a fundamental role in ALL.
Collapse
Affiliation(s)
- T Holmlund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
59
|
Copeland RA. Protein methyltransferase inhibitors as personalized cancer therapeutics. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ddstr.2011.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
60
|
Franci G, Miceli M, Altucci L. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics 2012; 2:731-42. [PMID: 22122079 DOI: 10.2217/epi.10.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The term 'epigenetic' fuses old and new concepts that refer to the modulation of gene expression in cellular heritability, fate, development and programming-reprogramming other than the DNA sequence itself. Epigenetic control of transcription is regulated by enzymes that mediate covalent modifications at gene-regulatory regions and histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate chromatin epigenetic reactions are deregulated in diseases such as cancer. Thus, small-molecule inhibitors that target chromatin-modifying enzymes represent a novel option for treatment, and DNA methyltransferase and histone deacetylase inhibitors have been approved for cancer treatment. Moreover, other classes of epi-enzymes (MS-275, SAHA) have been demonstrated to have strong disease association, and are currently being targeted for modulation. An epigenetic poly-pharmacological approach targeting multiple chromatin-modifying enzymes may represent a 'smart' option to treat cancer versus the current view on the selective and single pharmacological targeting of epigenetic enzymes.
Collapse
|
61
|
Abstract
Suberoylanilide hydroxamic acid (vorinostat) was the first of the histone deacetylase inhibitors (HDACi) to be entered as therapy for the treatment of cutaneous T-cell lymphoma. Since then, a number of HDACi belonging to the short-chain fatty acid, hydroxamate, cyclic peptide or benzamide classes have been investigated in Phase II or III clinical trials (alone or in combination) for the treatment of many kinds of tumors. In addition, HDACi can be useful in antimalarial and antifungal therapies, and can reactivate HIV-1 expression in latent cellular reservoirs, thus suggesting that they could be used in combination with highly active antiretroviral therapy. Moreover, they have also proved their efficacy in neurodegenerative diseases, such as Huntington's disease, Parkinson's disease and Friedreich's ataxia. In particular, a new series of bis-anilides demonstrating a peculiar mechanism of action displayed highly beneficial effects against Huntington's disease and Friedreich's ataxia. In addition, a number of sirtuin inhibitors demonstrated antiproliferative effects in cell assays as well as in mouse tumor models, thus suggesting a role of such compounds in therapy against cancer. Furthermore, the SIRT2-selective AGK-2 has been reported to have protective effects against Parkinson's disease, and resveratrol and other sirtuin activators can be useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Antonello Mai
- Pasteur Institute-Cenci Bolognetti Foundation, Drug Chemistry and Technologies Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, Italy.
| |
Collapse
|
62
|
Trisciuoglio D, Ragazzoni Y, Pelosi A, Desideri M, Carradori S, Gabellini C, Maresca G, Nescatelli R, Secci D, Bolasco A, Bizzarri B, Cavaliere C, D'Agnano I, Filetici P, Ricci-Vitiani L, Rizzo MG, Del Bufalo D. CPTH6, a thiazole derivative, induces histone hypoacetylation and apoptosis in human leukemia cells. Clin Cancer Res 2011; 18:475-86. [PMID: 22068659 DOI: 10.1158/1078-0432.ccr-11-0579] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously identified novel thiazole derivatives able to reduce histone acetylation and histone acetyltransferase (HAT) activity in yeast. Among these compounds, 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) has been selected and used throughout this study. EXPERIMENTAL DESIGN The effect of CPTH6 on histone acetylation, cell viability and differentiation, cell-cycle distribution, and apoptosis in a panel of acute myeloid leukemia and solid tumor cell lines has been evaluated. RESULTS Here, we showed that CPTH6 leads to an inhibition of Gcn5 and pCAF HAT activity. Moreover, it inhibits H3/H4 histones and α-tubulin acetylation of a panel of leukemia cell lines. Concentration- and time-dependent inhibition of cell viability, paralleled by accumulation of cells in the G(0)/G(1) phase and depletion from the S/G(2)M phases, was observed. The role of mitochondrial pathway on CPTH6-induced apoptosis was shown, being a decrease of mitochondrial membrane potential and the release of cytochrome c, from mitochondria to cytosol, induced by CPTH6. Also the involvement of Bcl-2 and Bcl-xL on CPTH6-induced apoptosis was found after overexpression of the two proteins in leukemia cells. Solid tumor cell lines from several origins were shown to be differently sensitive to CPTH6 treatment in terms of cell viability, and a correlation between the inhibitory efficacy on H3/H4 histones acetylation and cytotoxicity was found. Differentiating effect on leukemia and neuroblastoma cell lines was also induced by CPTH6. CONCLUSIONS These results make CPTH6 a suitable tool for discovery of molecular targets of HAT and, potentially, for the development of new anticancer therapies, which warrants further investigations.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rossi C, Fincham CI, D’Andrea P, Porcelloni M, Ettorre A, Mauro S, Bigioni M, Binaschi M, Maggi CA, Nardelli F, Parlani M, Fattori D. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors. Bioorg Med Chem Lett 2011; 21:6767-9. [DOI: 10.1016/j.bmcl.2011.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
|
64
|
Furdas SD, Kannan S, Sippl W, Jung M. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Arch Pharm (Weinheim) 2011; 345:7-21. [PMID: 22234972 DOI: 10.1002/ardp.201100209] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 01/24/2023]
Abstract
Alteration of the acetylation state of histone proteins contributes to transcriptional regulation and epigenetic inheritance. Dysregulation of these processes may lead to human diseases, especially cancer. One of the major chromatin modifications is histone acetylation and this review gives an overview of the role of histone acetyltransferases, their structural aspects, as well as of chemical modulators targeting their enzymatical activities. Inhibitors and activators of histone acetyltransferases are presented and their capability to influence histone and non-histone protein acetylation levels is discussed. Development of small molecules as epigenetic tools that alter histone acetyltransferase activity will be helpful to better understand the consequences of histone and generally protein acetylation and potentially offer novel therapeutic approaches for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Silviya D Furdas
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Germany
| | | | | | | |
Collapse
|
65
|
Na HK, Park JM, Lee HG, Lee HN, Myung SJ, Surh YJ. 15-Hydroxyprostaglandin dehydrogenase as a novel molecular target for cancer chemoprevention and therapy. Biochem Pharmacol 2011; 82:1352-60. [PMID: 21856294 DOI: 10.1016/j.bcp.2011.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in arachidonic acid cascade, plays a key role in the biosynthesis of prostaglandin E(2) (PGE(2)) upon inflammatory insults. Overproduction of PGE(2) stimulates proliferation of various cancer cells, confers resistance to apoptosis of cancerous or transformed cells, and accelerates metastasis and angiogenesis. Excess PGE(2) undergoes metabolic inactivation which is catalyzed by NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In this context, 15-PGDH has been speculated as a physiological antagonist of COX-2 and a tumor suppressor. Thus, overexpression of 15-PGDH has been known to protect against experimentally induced carcinogenesis and renders the cancerous or transformed cells susceptible to apoptosis by counteracting oncogenic action of PGE(2). In contrast, silence of 15-PGDH is observed in some cancer cells, which is associated with epigenetic modification, such as DNA methylation and histone deacetylation, in the promoter region of 15-PGDH. A variety of compounds capable of inducing the expression of 15-PGDH have been reported, which include the histone deacetylase inhibitors, nonsteroidal anti-inflammatory drugs, and peroxisome proliferator-activated receptor-gamma agonists. Therefore, 15-PGDH may be considered as a novel molecular target for cancer chemoprevention and therapy. This review highlights the role of 15-PGDH in carcinogenesis and its regulation.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, 147 Mia-dong, Kangbuk-gu, Seoul 142-100, South Korea
| | | | | | | | | | | |
Collapse
|
66
|
Carradori S, Secci D, Mai A. Epigenetic modulation of PGC-1α activity by GCN5 inhibitors: WO2010007085. Expert Opin Ther Pat 2011; 21:1651-6. [PMID: 21756203 DOI: 10.1517/13543776.2011.602069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The transcriptional peroxisome proliferator-activated receptor γ (PPARγ) co-activator PGC-1α plays a central role in the regulation of cellular energy metabolism. Among the wide range of its activities, PGC-1α controls mitochondrial biogenesis and function and is one of the main factors involved in hormonal and nutrient regulation of hepatic gluconeogenesis. PGC-1α is present in a multiprotein complex, and its activity can also be modulated through epigenetic modifications. In particular, it is directly acetylated by the HAT enzyme general control nonderepressible 5 (GCN5), resulting in a transcriptionally inactive protein that relocalizes from promoter regions to nuclear foci, whereas it is deacetylated by SIRT1 at multiple lysine sites, with a subsequent increase in its activity leading to induction of liver gluconeogenic gene transcription. Thus, both GCN5 and SIRT1 may be pharmacological targets to regulate the activity of PGC-1α, providing a potential treatment for metabolic disorders in which hepatic glucose output is altered.
Collapse
Affiliation(s)
- Simone Carradori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P. A. Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
67
|
Abstract
Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer.
Collapse
|
68
|
Abstract
INTRODUCTION Epigenetics describes the phenomenon of heritable changes in gene regulation governed by non-Mendelian processes, primarily through biochemical modifications to chromatin that occur during cell differentiation and development. Abnormal levels of DNA and/or histone modifications are observed in patients with a wide variety of chronic diseases. Drugs that target the proteins controlling these chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. AREAS COVERED This article reviews research characterizing dysregulation of epigenetic processes in cancer, immuno-inflammatory, psychiatric, neurological, metabolic and virology disease areas, and summarizes recent developments in identifying small molecule modulators that are being used to inform target discovery and initiate drug discovery projects. EXPERT OPINION There are numerous potential opportunities for epigenetic modulators in treating a wide range of chronic diseases; however, the field is complex, involving > 300 proteins, and much work is still required to provide tools to unravel the functions of individual proteins, particularly in vivo. This groundwork is essential to allow the drug discovery community to focus on those epigenetic proteins most likely to be suitable targets for safe, efficacious new therapies.
Collapse
Affiliation(s)
- Tom D Heightman
- Astex Therapeutics Ltd., 436 Cambridge Science Park, Cambridge CB4 0QA, UK.
| |
Collapse
|
69
|
Milite C, Castellano S, Benedetti R, Tosco A, Ciliberti C, Vicidomini C, Boully L, Franci G, Altucci L, Mai A, Sbardella G. Modulation of the activity of histone acetyltransferases by long chain alkylidenemalonates (LoCAMs). Bioorg Med Chem 2011; 19:3690-701. [PMID: 21292492 DOI: 10.1016/j.bmc.2011.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
Abstract
A novel class of KAT modulators (long chain alkylidenemalonates, LoCAMs) has been identified. Variations of the alkyl chain length can change the activity profile from inhibition of both KAT3A/KAT2B (as derivative 2a) to the peculiar profile of pentadecylidenemalonate 1b, the first activator/inhibitor of histone acetyltransferases. Together with the powerful apoptotic effect (particularly notable if considering that anacardic acid and other KAT inhibitors are not cell permeable) appoint them as valuable biological tools to understand the mechanisms of lysine acetyltransferases.
Collapse
Affiliation(s)
- Ciro Milite
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2011; 21:324-8. [DOI: 10.1016/j.bmcl.2010.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/03/2023]
|
71
|
Bountra C, Oppermann U, Heightman TD. Animal models of epigenetic regulation in neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:281-322. [PMID: 21225415 DOI: 10.1007/7854_2010_104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epigenetics describes the phenomenon of heritable changes in gene regulation that are governed by non-Mendelian processes, primarily through biochemical modifications to chromatin structure that occur during cell development and differentiation. Numerous lines of evidence link abnormal levels of chromatin modifications (either to DNA, histones, or both) in patients with a wide variety of diseases including cancer, psychiatry, neurodegeneration, metabolic and inflammatory disorders. Drugs that target the proteins controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. Here, we summarize recent research linking epigenetic dysregulation with diseases in neurosciences, the application of relevant animal models, and the potential for small molecule modulator development to facilitate target discovery, validation and translation into clinical treatments.
Collapse
Affiliation(s)
- Chas Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK,
| | | | | |
Collapse
|
72
|
Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. J Biomed Biotechnol 2010; 2011:862125. [PMID: 21274273 PMCID: PMC3022265 DOI: 10.1155/2011/862125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/16/2010] [Indexed: 01/26/2023] Open
Abstract
The androgen receptor (AR) is a ligand activated transcription factor and member of the steroid hormone receptor (SHR) subfamily of nuclear receptors. In the early stages of prostate carcinogenesis, tumour growth is dependent on androgens, and AR directly mediates these effects by modulating gene expression. During transcriptional regulation, the AR recruits numerous cofactors with acetylation-modifying enzymatic activity, the best studied include p300/CBP and the p160/SRC family of coactivators. It is known that recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) is key in fine-tuning responses to androgens and is thus likely to play a role in prostate cancer progression. Further, these proteins can also modify the AR itself. The functional consequences of AR acetylation, the role of modifying enzymes in relation to AR transcriptional response, and prostate cancer will be discussed.
Collapse
|
73
|
Abstract
Several lines of evidence suggest the involvement of disturbance in epigenetic processes in autoimmune disease. Most noteworthy is the global DNA hypomethylation seen in lupus. Epigenetic states in difference from genetic lesions are potentially reversible and hence candidates for pharmacological intervention. Potential targets for drug development are histone modification and DNA methylating and demethylating enzymes. The most advanced set of drugs in clinical development are histone deacetylase (HDAC) inhibitors. However, the prevalence of DNA hypomethylation in lupus suggests that we should shift our attention from HDAC inhibitors to DNA demethylation inhibitors. MBD2 was recently proposed to be involved in demethylation in T cells in lupus and is, therefore, a candidate target. Although this field is at its infancy, it carries great promise.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
74
|
Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int J Cell Biol 2010; 2010:632739. [PMID: 20976254 PMCID: PMC2952894 DOI: 10.1155/2010/632739] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/13/2010] [Indexed: 12/24/2022] Open
Abstract
Healthy lifestyles and environment produce a good state of health. A number of scientific studies support the notion that external stimuli regulate an individual's epigenomic profile. Epigenetic changes play a key role in defining gene expression patterns under both normal and pathological conditions. As a major posttranslational modification, lysine (K) acetylation has received much attention, owing largely to its significant effects on chromatin dynamics and other cellular processes across species. Lysine acetyltransferases and deacetylases, two opposing families of enzymes governing K-acetylation, have been intimately linked to cancer and other diseases. These enzymes have been pursued by vigorous efforts for therapeutic development in the past 15 years or so. Interestingly, certain dietary components have been found to modulate acetylation levels in vivo. Here we review dietary, metabolic, and environmental modulators of the K-acetylation machinery and discuss how they may be of potential value in the context of disease prevention.
Collapse
|
75
|
Hua WF, Fu YS, Liao YJ, Xia WJ, Chen YC, Zeng YX, Kung HF, Xie D. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur J Pharmacol 2010; 637:16-21. [PMID: 20385124 DOI: 10.1016/j.ejphar.2010.03.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/04/2010] [Accepted: 03/22/2010] [Indexed: 12/22/2022]
Abstract
Curcumin, a natural compound isolated from turmeric, may inhibit cell proliferation in various tumor cells through a mechanism that is not fully understood. The enhancer of zeste homolog 2 (EZH2) gene is overexpressed in human breast cancers with poor prognosis. In this study, we observed a dose- and time-dependent down-regulation of expression of EZH2 by curcumin that correlates with decreased proliferation in the MDA-MB-435 breast cancer cell line. The curcumin treatment resulted in an accumulation of cells in the G(1) phase of the cell cycle. Further investigation revealed that curcumin-induced down-regulation of EZH2 through stimulation of three major members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. These data suggest that an underlying mechanism of the MAPK pathway mediates the down-regulation of EZH2, thus contributing to the anti-proliferative effects of curcumin against breast cancer.
Collapse
Affiliation(s)
- Wen-Feng Hua
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Fanslau C, Pedicord D, Nagulapalli S, Gray H, Pang S, Jayaraman L, Lippy J, Blat Y. An electrophoretic mobility shift assay for the identification and kinetic analysis of acetyl transferase inhibitors. Anal Biochem 2010; 402:65-8. [PMID: 20338149 DOI: 10.1016/j.ab.2010.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 01/23/2023]
Abstract
Histone acetyl transferases are important regulators of cellular homeostasis. This study describes a sensitive acetyl transferase electrophoretic mobility shift assay applicable both for kinetic analysis of acetyl transferase inhibitors and for high-throughput testing. Application of the assay for human GCN5L2 enabled dissection of inhibitor competition with respect to acetyl coenzyme A. Furthermore, we demonstrated that the assay can detect time-dependent inhibition of human GCN5L2 by reactive inhibitors.
Collapse
Affiliation(s)
- Caroline Fanslau
- Mechanistic Biochemistry, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
|