51
|
Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 2013; 31:1231-8. [PMID: 23358974 DOI: 10.1200/jco.2012.44.0958] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.
Collapse
|
52
|
RNF2/Ring1b negatively regulates p53 expression in selective cancer cell types to promote tumor development. Proc Natl Acad Sci U S A 2013; 110:1720-5. [PMID: 23319651 DOI: 10.1073/pnas.1211604110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large numbers of studies have focused on the posttranslational regulation of p53 activity. One of the best-known negative regulators for p53 is MDM2, an E3 ubiquitin ligase that promotes p53 degradation through proteasome degradation pathways. Additional E3 ligases have also been reported to negatively regulate p53. However, whether these E3 ligases have distinct/overlapping roles in the regulation of p53 is largely unknown. In this study, we identify RNF2 (ring finger protein 2) as an E3 ligase that targets p53 for degradation. The E3 ligase activity of RNF2 requires Bmi1 protein, a component of the polycomb group (PcG) complex. The up-regulation of p53 does not affect RNF2 expression. Unlike Mdm2, RNF2 only degrades p53 in selective cell lines, such as those from germ-cell tumors. The knockdown of RNF2 induces apoptosis, which can be rescued through the reduction of p53 expression. Moreover, the down-regulation of RNF2 expression in germ-cell tumors significantly reduces tumor cell growth, while the simultaneous down-regulation of both genes restores tumor cell growth in vitro and in tumor xenograft models. Furthermore, a reverse correlation between RNF2 and p53 expression was detected in human ovarian cancer tissues. Together, these results indicate that RNF2 is an E3 ligase for p53 degradation in selective cells, implicating RNF2 as a therapeutic target to restore tumor suppression through p53 in certain tumor cells.
Collapse
|
53
|
Wustrow D, Zhou HJ, Rolfe M. Inhibition of Ubiquitin Proteasome System Enzymes for Anticancer Therapy. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
54
|
Blees JS, Bokesch HR, Rübsamen D, Schulz K, Milke L, Bajer MM, Gustafson KR, Henrich CJ, McMahon JB, Colburn NH, Schmid T, Brüne B. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1. PLoS One 2012; 7:e46567. [PMID: 23056346 PMCID: PMC3462793 DOI: 10.1371/journal.pone.0046567] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
Loss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70(S6K1)-dependent protein phosphorylation, β-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation. Erioflorin was identified as the active component and inhibited not only degradation of the Pdcd4-luciferase-based reporter but also of endogenous Pdcd4 at low micromolar concentrations. Mechanistically, erioflorin interfered with the interaction between the E3-ubiquitin ligase β-TrCP1 and Pdcd4 in cell culture and in in vitro binding assays, consequently decreasing ubiquitination and degradation of Pdcd4. Interestingly, while erioflorin stabilized additional β-TrCP-targets (such as IκBα and β-catenin), it did not prevent the degradation of targets of other E3-ubiquitin ligases such as p21 (a Skp2-target) and HIF-1α (a pVHL-target), implying selectivity for β-TrCP. Moreover, erioflorin inhibited the tumor-associated activity of known Pdcd4- and IκBα-regulated αtranscription factors, that is, AP-1 and NF-κB, altered cell cycle progression and suppressed proliferation of various cancer cell lines. Our studies succeeded in identifying erioflorin as a novel Pdcd4 stabilizer that inhibits the interaction of Pdcd4 with the E3-ubiquitin ligase β-TrCP1. Inhibition of E3-ligase/target-protein interactions may offer the possibility to target degradation of specific proteins only as compared to general proteasome inhibition.
Collapse
Affiliation(s)
- Johanna S. Blees
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heidi R. Bokesch
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Daniela Rübsamen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kathrin Schulz
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Larissa Milke
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Magdalena M. Bajer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Curtis J. Henrich
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nancy H. Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
55
|
Rao V, Guan B, Mutton LN, Bieberich CJ. Proline-mediated proteasomal degradation of the prostate-specific tumor suppressor NKX3.1. J Biol Chem 2012; 287:36331-40. [PMID: 22910912 DOI: 10.1074/jbc.m112.352823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reduced expression of the homeodomain transcription factor NKX3.1 is associated with prostate cancer initiation and progression. NKX3.1 turnover requires post-translational modifications including phosphorylation and ubiquitination. Here, we demonstrate the existence of a non-canonical mechanism for NKX3.1 turnover that does not require ubiquitination. Using a structure-function approach, we have determined that the conserved, C-terminal 21-amino acid domain of NKX3.1 (C21) is required for this novel ubiquitin-independent degradation mechanism. Addition of C21 decreased half-life of enhanced green fluorescence protein (EGFP) by 5-fold, demonstrating that C21 constitutes a portable degron. Point mutational analyses of C21 revealed that a conserved proline residue (Pro-221) is central to degron activity, and mutation to alanine (P221A) increased NKX3.1 half-life >2-fold. Proteasome inhibition and in vivo ubiquitination analyses indicated that degron activity is ubiquitin-independent. Evaluating degron activity in the context of a ubiquitination-resistant, lysine-null NKX3.1 mutant (NKX3.1(KO)) confirmed that P221A mutation conferred additional stability to NKX3.1. Treatment of prostate cancer cell lines with a C21-based peptide specifically increased the level of NKX3.1, suggesting that treatment with degron mimetics may be a viable approach for NKX3.1 restoration.
Collapse
Affiliation(s)
- Varsha Rao
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
56
|
Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int J Mol Sci 2012; 13:9709-9740. [PMID: 22949826 PMCID: PMC3431824 DOI: 10.3390/ijms13089709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022] Open
Abstract
As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.
Collapse
|
57
|
Braun P, Gingras AC. History of protein-protein interactions: From egg-white to complex networks. Proteomics 2012; 12:1478-98. [DOI: 10.1002/pmic.201100563] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology; Center for Life and Food Sciences Weihenstephan; Technical University Munich; Freising Germany
- Research Unit Protein Science; Helmholtz Centre Munich; Munich Germany
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
58
|
MDM2 antagonist Nutlin-3a protects wild-type p53 cancer cells from paclitaxel. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-4984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
59
|
Chargari C, Leteur C, Angevin E, Bashir T, Schoentjes B, Arts J, Janicot M, Bourhis J, Deutsch E. Preclinical assessment of JNJ-26854165 (Serdemetan), a novel tryptamine compound with radiosensitizing activity in vitro and in tumor xenografts. Cancer Lett 2011; 312:209-18. [DOI: 10.1016/j.canlet.2011.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 11/29/2022]
|
60
|
Malloy KL, Choi H, Fiorilla C, Valeriote FA, Matainaho T, Gerwick WH. Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction. Bioorg Med Chem Lett 2011; 22:683-8. [PMID: 22104152 DOI: 10.1016/j.bmcl.2011.10.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Bioassay-guided fractionation of two cyanobacterial extracts from Papua New Guinea has yielded hoiamide D in both its carboxylic acid and conjugate base forms. Hoiamide D is a polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS)-derived natural product that features two consecutive thiazolines and a thiazole, as well as a modified isoleucine residue. Hoiamide D displayed inhibitory activity against p53/MDM2 interaction (EC(50)=4.5 μM), an attractive target for anticancer drug development.
Collapse
Affiliation(s)
- Karla L Malloy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
61
|
Zhdanko A, Schmauder A, Ma CI, Sibley LD, Sept D, Sasse F, Maier ME. Synthesis of chondramide A analogues with modified β-tyrosine and their biological evaluation. Chemistry 2011; 17:13349-57. [PMID: 22012705 DOI: 10.1002/chem.201101978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 01/23/2023]
Abstract
Starting from cinnamates 9, obtained by Wittig reaction or Heck coupling, the diols 17 were prepared by asymmetric dihydroxylation. This was followed by a regioselective substitution of the 3-OH group with hydrazoic acid under Mitsunobu conditions. Methylation of the 2-OH group and reduction of the azide group led to the β-tyrosine derivatives 8. Condensation with the dipeptide acid 6 furnished the tripeptide part of the chondramides. The derived acids 21 were combined with the hydroxy ester 7 to the esters 22. Cleavage of the tert-butyl groups and intramolecular lactam formation gave rise to the chondramide A analogues 2 b-k. Growth inhibition assays showed most of the analogues to be biologically active. Some of them even reach the activity of jasplakinolide. It can be concluded that the 4-position of the aryl ring in the β-tyrosine of chondramide A tolerates structural modifications quite well.
Collapse
Affiliation(s)
- Alexander Zhdanko
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Chou TF, Deshaies RJ. Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system. J Biol Chem 2011; 286:16546-54. [PMID: 21343295 PMCID: PMC3089497 DOI: 10.1074/jbc.m110.215319] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/14/2011] [Indexed: 01/09/2023] Open
Abstract
We have generated a set of dual-reporter human cell lines and devised a chase protocol to quantify proteasomal degradation of a ubiquitin fusion degradation (UFD) substrate, a ubiquitin ligase CRL2(VHL) substrate, and a ubiquitin-independent substrate. Well characterized inhibitors that target different aspects of the ubiquitin-proteasome system can be distinguished by their distinctive patterns of substrate stabilization, enabling assignment of test compounds as inhibitors of the proteasome, ubiquitin chain formation or perception, CRL activity, or the UFD-p97 pathway. We confirmed that degradation of the UFD but not the CRL2(VHL) or ubiquitin-independent substrates depends on p97 activity. We optimized our suite of assays to establish conditions suitable for high-throughput screening and then validated their performance by screening against 160 cell-permeable protein kinase inhibitors. This screen identified Syk inhibitor III as an irreversible p97/vasolin containing protein inhibitor (IC(50) = 1.7 μM) that acts through Cys-522 within the D2 ATPase domain. Our work establishes a high-throughput screening-compatible pipeline for identification and classification of small molecules, cDNAs, or siRNAs that target components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Raymond J. Deshaies
- From the Division of Biology and
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
63
|
Rigatti MJ, Verma R, Belinsky GS, Rosenberg DW, Giardina C. Pharmacological inhibition of Mdm2 triggers growth arrest and promotes DNA breakage in mouse colon tumors and human colon cancer cells. Mol Carcinog 2011; 51:363-78. [PMID: 21557332 DOI: 10.1002/mc.20795] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 12/11/2022]
Abstract
The p53 tumor suppressor protein performs a number of cellular functions, ranging from the induction of cell cycle arrest and apoptosis to effects on DNA repair. Modulating p53 activity with Mdm2 inhibitors is a promising approach for treating cancer; however, it is presently unclear how the in vivo application of Mdm2 inhibitors impact the myriad processes orchestrated by p53. Since approximately half of all colon cancers (predominately cancers with microsatellite instability) are p53-normal, we assessed the anticancer activity of the Mdm2 inhibitor Nutlin-3 in the mouse azoxymethane (AOM) colon cancer model, in which p53 remains wild type. Using a cell line derived from an AOM-induced tumor, we found that four daily exposures to Nutlin-3 induced persistent p53 stabilization and cell cycle arrest without significant apoptosis. A 4-day dosing schedule in vivo generated a similar response in colon tumors; growth arrest without significantly increased apoptosis. In adjacent normal colon tissue, Nutlin-3 treatment reduced both cell proliferation and apoptosis. Surprisingly, Nutlin-3 induced a transient DNA damage response in tumors but not in adjacent normal tissue. Nutlin-3 likewise induced a transient DNA damage response in human colon cancer cells in a p53-dependent manner, and enhanced DNA strand breakage and cell death induced by doxorubicin. Our findings indicate that Mdm2 inhibitors not only trigger growth arrest, but may also stimulate p53's reported ability to slow homologous recombination repair. The potential impact of Nutlin-3 on DNA repair in tumors suggests that Mdm2 inhibitors may significantly accentuate the tumoricidal actions of certain therapeutic modalities.
Collapse
Affiliation(s)
- Marc J Rigatti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
64
|
Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 2011; 4:16. [PMID: 21504625 PMCID: PMC3103487 DOI: 10.1186/1756-8722-4-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
We reviewed preclinical data and clinical development of MDM2 (murine double minute 2), ALK (anaplastic lymphoma kinase) and PARP (poly [ADP-ribose] polymerase) inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC). Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.
Collapse
Affiliation(s)
- Yuan Yuan
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Yu-Min Liao
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, China
| | - Chung-Tsen Hsueh
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hamid R Mirshahidi
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
65
|
Macchiarulo A, Giacchè N, Carotti A, Moretti F, Pellicciari R. Expanding the horizon of chemotherapeutic targets: From MDM2 to MDMX (MDM4). MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00238k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
66
|
Beck HP, DeGraffenreid M, Fox B, Allen JG, Rew Y, Schneider S, Saiki AY, Yu D, Oliner JD, Salyers K, Ye Q, Olson S. Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors. Bioorg Med Chem Lett 2010; 21:2752-5. [PMID: 21123063 DOI: 10.1016/j.bmcl.2010.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
Human murine double minute 2 (MDM2) is a negative regulator of p53, which plays an important role in cell cycle and apoptosis. We report several optimizations to the synthesis of the chromenotriazolopyrimidine series of MDM2-p53 protein-protein interaction inhibitors. Additionally, the in vitro and in vivo stability, pharmacokinetic properties and solubility were improved through N-substitution.
Collapse
Affiliation(s)
- Hilary P Beck
- Chemistry Research & Discovery, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Kojima K, Burks JK, Arts J, Andreeff M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 2010; 9:2545-57. [PMID: 20736344 DOI: 10.1158/1535-7163.mct-10-0337] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of small-molecule activators of p53 is currently focused on malignancies containing a wild-type p53 genotype, which is present in most leukemias. JNJ-26854165 is one such p53-activating agent, but its mechanism of action remains to be elucidated. Here, we report the effects of JNJ-26854165 in acute leukemias. JNJ-26854165 treatment induced p53-mediated apoptosis in acute leukemia cells with wild-type p53, in which p53 rapidly drives transcription-independent apoptosis followed by activation of a transcription-dependent pathway. JNJ-26854165 accelerated the proteasome-mediated degradation of p21 and antagonized the transcriptional induction of p21 by p53. Interestingly, JNJ-26854165 induced S-phase delay and upregulated E2F1 expression in p53 mutant cells, resulting in apoptosis preferentially of S-phase cells. E2F1 knockdown blocked apoptosis induced by JNJ-26854165 in p53 mutant cells. Apoptotic activity of JNJ-26854165 against primary acute leukemia cells was maintained in leukemia/stroma cocultures, unlike doxorubicin, which has reduced cytrotoxicity in coculture systems. JNJ-26854165 synergizes with 1-β-arabinofuranosylcytosine or doxorubicin to induce p53-mediated apoptosis. Our data suggest that JNJ-26854165 may provide a novel therapeutic approach for the treatment of acute leukemias. The presence of p53-independent apoptotic activity in addition to p53-mediated apoptosis induction, if operational in vivo, may prevent the selection of p53 mutant subclones during therapy.
Collapse
Affiliation(s)
- Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
68
|
Abstract
Protein-protein interactions between members of the Myc transcription factor network are potential targets of small molecule inhibitors and stabilizers. Diverse screening strategies, including fluorescence resonance energy transfer, fluorescence polarization, two hybrid and protein complementation assays have identified several lead compounds that inhibit Myc-Max dimerization and one compound that stabilizes the Max homodimer. Representative compounds interfere with Myc-induced transcriptional activation, Myc-mediated oncogenic transformation, Myc-driven cellular replication and DNA binding of Myc. For the best characterized compounds, specific binding sites have been determined, and molecular mechanisms of action have been documented. This knowledge of small molecule - protein interaction is currently applied to highly targeted approaches that seek to identify novel compounds with improved potency.
Collapse
Affiliation(s)
- Edward V Prochownik
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
69
|
Dezi C, Carotti A, Magnani M, Baroni M, Padova A, Cruciani G, Macchiarulo A, Pellicciari R. Molecular Interaction Fields and 3D-QSAR Studies of p53−MDM2 Inhibitors Suggest Additional Features of Ligand−Target Interaction. J Chem Inf Model 2010; 50:1451-65. [DOI: 10.1021/ci100113p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cristina Dezi
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Matteo Magnani
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Massimo Baroni
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Alessandro Padova
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| | - Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy, Siena Biotech S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy, Molecular Discovery Ltd, 215 Marsh Road, Pinner, Middlesex HA55NE, England, and Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università di Perugia, via Elce di Sotto 10, 06123 Perugia, Italy
| |
Collapse
|
70
|
Ma S, Busacca CA, Fandrick KR, Bartholomeyzik T, Haddad N, Shen S, Lee H, Saha A, Yee N, Senanayake C, Grinberg N. Directly Probing the Racemization of Imidazolines by Vibrational Circular Dichroism: Kinetics and Mechanism. Org Lett 2010; 12:2782-5. [DOI: 10.1021/ol100734t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shengli Ma
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Carl A. Busacca
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Keith R. Fandrick
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Teresa Bartholomeyzik
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Nizar Haddad
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Sherry Shen
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Heewon Lee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Anjan Saha
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Nathan Yee
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Chris Senanayake
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Nelu Grinberg
- Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| |
Collapse
|
71
|
Abstract
Dysregulation of the UPS (ubiquitin-proteasome system) has been implicated in a wide range of pathologies including cancer, neurodegeneration and viral infection. Inhibiting the proteasome has been shown to be an effective therapeutic strategy in humans; however, toxicity with this target remains high. E3s (Ub-protein ligases) represent an alternative attractive therapeutic target in the UPS. In this paper, we will discuss current platforms that report on E3 ligase activity and can detect E3 inhibitors, and underline the advantages and disadvantages of each approach.
Collapse
|
72
|
Bourgeas R, Basse MJ, Morelli X, Roche P. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 2010; 5:e9598. [PMID: 20231898 PMCID: PMC2834754 DOI: 10.1371/journal.pone.0009598] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging. Methodology/Principal Findings Here we describe this particular PPI chemical space through the presentation of 2P2IDB, a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2IDB were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2IDB complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2IDB dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction. Conclusions 2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess the potential druggability of their interfaces. The database can be accessed at http://2p2idb.cnrs-mrs.fr.
Collapse
Affiliation(s)
- Raphaël Bourgeas
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Marie-Jeanne Basse
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Xavier Morelli
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
- * E-mail: (XM); (PR)
| | - Philippe Roche
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
- * E-mail: (XM); (PR)
| |
Collapse
|
73
|
Reynès C, Host H, Camproux AC, Laconde G, Leroux F, Mazars A, Deprez B, Fahraeus R, Villoutreix BO, Sperandio O. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 2010; 6:e1000695. [PMID: 20221258 PMCID: PMC2832677 DOI: 10.1371/journal.pcbi.1000695] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/30/2010] [Indexed: 12/27/2022] Open
Abstract
Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com.
Collapse
Affiliation(s)
| | - Hélène Host
- CDithem Platform/IGM, Paris, France
- Inserm UMR-S 761, Institut Pasteur de Lille, Lille, France
- Université Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | | | - Guillaume Laconde
- CDithem Platform/IGM, Paris, France
- Inserm UMR-S 761, Institut Pasteur de Lille, Lille, France
- Université Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Florence Leroux
- CDithem Platform/IGM, Paris, France
- Inserm UMR-S 761, Institut Pasteur de Lille, Lille, France
- Université Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Anne Mazars
- CDithem Platform/IGM, Paris, France
- UMR-S940, Hôpital St Louis, Paris, France
| | - Benoit Deprez
- CDithem Platform/IGM, Paris, France
- Inserm UMR-S 761, Institut Pasteur de Lille, Lille, France
- Université Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Robin Fahraeus
- CDithem Platform/IGM, Paris, France
- UMR-S940, Hôpital St Louis, Paris, France
| | - Bruno O. Villoutreix
- Inserm UMR-S 973/MTi, University Paris Diderot, Paris, France
- CDithem Platform/IGM, Paris, France
| | - Olivier Sperandio
- Inserm UMR-S 973/MTi, University Paris Diderot, Paris, France
- CDithem Platform/IGM, Paris, France
- * E-mail:
| |
Collapse
|
74
|
Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett 2010; 293:144-57. [PMID: 20153925 DOI: 10.1016/j.canlet.2010.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 12/16/2022]
Abstract
The MYCN oncogene encodes a transcription factor which is amplified in up to 40% of high risk neuroblastomas. MYCN amplification is a well-established poor prognostic marker in neuroblastoma, however the role of MYCN expression and the mechanisms by which it acts to promote an aggressive phenotype remain largely unknown. This review discusses the current evidence identifying the direct and indirect downstream transcriptional targets of MYCN from recent studies, with particular reference to how MYCN affects the cell cycle, DNA damage response, differentiation and apoptosis in neuroblastoma.
Collapse
Affiliation(s)
- Emma Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
75
|
Verma R, Rigatti MJ, Belinsky GS, Godman CA, Giardina C. DNA damage response to the Mdm2 inhibitor nutlin-3. Biochem Pharmacol 2010; 79:565-74. [PMID: 19788889 DOI: 10.1016/j.bcp.2009.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 12/11/2022]
Abstract
Mdm2 inhibitors represent a promising class of p53 activating compounds that may be useful in cancer treatment and prevention. However, the consequences of pharmacological p53 activation are not entirely clear. We observed that Nutlin-3 triggered a DNA damage response in azoxymethane-induced mouse AJ02-NM(0) colon cancer cells, characterized by the phosphorylation of H2AX (at Ser-139) and p53 (at Ser-15). The DNA damage response was highest in cells showing robust p53 stabilization, it could be triggered by the active but not the inactive Nutlin-3 enantiomer, and it was also activated by another pharmacological Mdm2 inhibitor (Caylin-1). Quantification of gamma H2AX-positive cells following Nutlin-3 exposure showed that approximately 17% of cells in late S and G2/M were mounting a DNA damage response (compared to a approximately 50% response to 5-fluorouracil). Nutlin-3 treatment caused the formation of double-strand DNA strand breaks, promoted the formation of micronuclei, accentuated strand breakage induced by doxorubicin and sensitized the mouse colon cancer cells to DNA break-inducing topoisomerase II inhibitors. Although the HCT116 colon cancer cells did not mount a significant DNA damage response following Nutlin-3 treatment, Nutlin-3 enhanced the DNA damage response to the nucleotide synthesis inhibitor hydroxyurea in a p53-dependent manner. Finally, p21 deletion also sensitized HCT116 cells to the Nutlin-3-induced DNA damage response, suggesting that cell cycle checkpoint abnormalities may promote this response. We propose that p53 activation by Mdm2 inhibitors can result in the slowing of double-stranded DNA repair. Although this effect may suppress illegitimate homologous recombination repair, it may also increase the risk of clastogenic events.
Collapse
Affiliation(s)
- Rajeev Verma
- Department of Molecular & Cell Biology U3125, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
76
|
Campbell F, Plante JP, Edwards TA, Warriner SL, Wilson AJ. N-alkylated oligoamide α-helical proteomimetics. Org Biomol Chem 2010; 8:2344-51. [DOI: 10.1039/c001164a] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW, Matison ME, Schneider S, Huang X, Yu D, Andrews PS, Reichelt A, Long AM, Yakowec P, Yang EY, Lee TA, Oliner JD. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 2009; 52:7044-53. [PMID: 19856920 DOI: 10.1021/jm900681h] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor protein 53 (p53) is a critical regulator of cell cycle and apoptosis that is frequently disabled in human tumors. In many tumor types, p53 is deleted or mutated, but in others p53 is inactivated by overexpression or amplification of its negative regulator mouse double minute 2 (MDM2). A high-throughput screening effort identified 6,7-bis(4-bromophenyl)-7,12-dihydro-6H-chromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidine as a potent inhibitor of the MDM2-p53 protein-protein interaction. This screening hit was found to be chemically unstable and difficult to handle due to poor DMSO solubility. Co-crystallization with the target protein helped to direct further optimization and provided a tractable lead series of novel MDM2-p53 inhibitors. In cellular assays, these compounds were shown to upregulate p53 protein levels and p53 signaling and to cause p53-dependent inhibition of proliferation and apoptosis.
Collapse
Affiliation(s)
- John G Allen
- Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Barakat K, Mane J, Friesen D, Tuszynski J. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions. J Mol Graph Model 2009; 28:555-68. [PMID: 20056466 DOI: 10.1016/j.jmgm.2009.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein.
Collapse
Affiliation(s)
- Khaled Barakat
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
79
|
Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ. Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein-protein interaction. Chem Commun (Camb) 2009:5091-3. [PMID: 20448956 PMCID: PMC2898631 DOI: 10.1039/b908207g] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/10/2009] [Indexed: 12/28/2022]
Abstract
Oligobenzamide inhibitors of the p53-hDM2 protein-protein interaction are described.
Collapse
Affiliation(s)
- Jeffrey P. Plante
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT. ; Fax: +44 (0)113 3431409; Tel: +44 (0)113 3436565
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Thomas Burnley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Barbora Malkova
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Michael E. Webb
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT. ; Fax: +44 (0)113 3431409; Tel: +44 (0)113 3436565
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Stuart L. Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT. ; Fax: +44 (0)113 3431409; Tel: +44 (0)113 3436565
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| | - Andrew J. Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT. ; Fax: +44 (0)113 3431409; Tel: +44 (0)113 3436565
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK LS29JT.
| |
Collapse
|
80
|
Abstract
BACKGROUND The evidence that some human cancers show wild-type p53 and overexpressed levels of MDM2 and/or MDMX has fueled the search for new therapeutic agents that could rescue p53 from the inhibition of MDM2 and MDMX. Recent data, suggesting a distinct and complementary mode of action of MDM2 and MDMX in the regulation of the pro-apoptotic activity of p53, have raised the notion that the development of dual or combined inhibitors of the two oncogenic proteins may result in more effective antitumor strategies. OBJECTIVE The objective of the present patent concerns the disclosure by two researchers of the University of South Florida, reporting a dual MDM2/MDMX inhibitor peptide that selectively blocks neoplastic growth and induces apoptosis in tumor cells. CONCLUSION Although the researchers' results provide the proof of concept of the feasibility of blocking both MDM2 and MDMX regulatory functions for the development of novel and more incisive p53-based anticancer strategies, their invention supplies medicinal chemists with a new interesting lead compound to aid the design of novel small-molecule inhibitors of the oncogenic proteins with drug-like properties.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Università di Perugia, Dipartimento di Chimica e Tecnologia del Farmaco, Perugia, Italy
| | | |
Collapse
|
81
|
Nathan DG, Orkin SH. Musings on genome medicine: cancer genetics and the promise of effective treatment. Genome Med 2009; 1:49. [PMID: 19439059 PMCID: PMC2689441 DOI: 10.1186/gm49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cancer is the most common acquired genetic disease. Great progress has been made in documenting the genetic abnormalities that cause the disease, and in the future each tumor will be subjected to genetic analysis and the appropriate combination of drugs selected. Although there are serious technological and cost hurdles to surmount and resistance and continued mutation will be a constant problem, the way is clear to rational therapy.
Collapse
|