51
|
West AJ, Tsui V, Stylli SS, Nguyen HPT, Morokoff AP, Kaye AH, Luwor RB. The role of interleukin-6-STAT3 signalling in glioblastoma. Oncol Lett 2018; 16:4095-4104. [PMID: 30250528 PMCID: PMC6144698 DOI: 10.3892/ol.2018.9227] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most common type of malignant brain tumor among adults and is currently a non-curable disease due primarily to its highly invasive phenotype, and the lack of successful current therapies. Despite surgical resection and post-surgical treatment patients ultimately develop recurrence of the tumour. Several signalling molecules have been implicated in the development, progression and aggressiveness of glioblastoma. The present study reviewed the role of interleukin (IL)-6, a cytokine known to be important in activating several pro-oncogenic signaling pathways in glioblastoma. The current study particularly focused on the contribution of IL-6 in recurrent glioblastoma, with particular focus on glioblastoma stem cells and resistance to therapy.
Collapse
Affiliation(s)
- Alice J West
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Vanessa Tsui
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Hong P T Nguyen
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
52
|
Rouhimoghadam M, Safarian S, Carroll JS, Sheibani N, Bidkhori G. Tamoxifen-Induced Apoptosis of MCF-7 Cells via GPR30/PI3K/MAPKs Interactions: Verification by ODE Modeling and RNA Sequencing. Front Physiol 2018; 9:907. [PMID: 30050469 PMCID: PMC6050429 DOI: 10.3389/fphys.2018.00907] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/21/2018] [Indexed: 01/28/2023] Open
Abstract
Tamoxifen (Nolvadex) is one of the most widely used and effective therapeutic agent for breast cancer. It benefits nearly 75% of patients with estrogen receptor (ER)-positive breast cancer that receive this drug. Its effectiveness is mainly attributed to its capacity to function as an ER antagonist, blocking estrogen binding sites on the receptor, and inhibiting the proliferative action of the receptor-hormone complex. Although, tamoxifen can induce apoptosis in breast cancer cells via upregulation of pro-apoptotic factors, it can also promote uterine hyperplasia in some women. Thus, tamoxifen as a multi-functional drug could have different effects on cells based on the utilization of effective concentrations or availability of specific co-factors. Evidence that tamoxifen functions as a GPR30 (G-Protein Coupled Receptor 30) agonist activating adenylyl cyclase and EGFR (Epidermal Growth Factor Receptor) intracellular signaling networks, provides yet another means of explaining the multi-functionality of tamoxifen. Here ordinary differential equation (ODE) modeling, RNA sequencing and real time qPCR analysis were utilized to establish the necessary data for gene network mapping of tamoxifen-stimulated MCF-7 cells, which express the endogenous ER and GPR30. The gene set enrichment analysis and pathway analysis approaches were used to categorize transcriptionally upregulated genes in biological processes. Of the 2,713 genes that were significantly upregulated following a 48 h incubation with 250 μM tamoxifen, most were categorized as either growth-related or pro-apoptotic intermediates that fit into the Tp53 and/or MAPK signaling pathways. Collectively, our results display that the effects of tamoxifen on the breast cancer MCF-7 cell line are mediated by the activation of important signaling pathways including Tp53 and MAPKs to induce apoptosis.
Collapse
Affiliation(s)
- Milad Rouhimoghadam
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shahrokh Safarian
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Gholamreza Bidkhori
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
53
|
Zhang S, Gupta S, Fitzgerald TJ, Bogdanov AA. Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics 2018; 2:1-11. [PMID: 29291159 PMCID: PMC5743834 DOI: 10.7150/ntno.22335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Constitutively activated signal transducer and activator of transcription 3 (STAT3) factor is an important therapeutic target in head and neck cancer (HNC). Despite early promising results, a reliable systemic delivery system for STAT3- targeted oligonucleotide (ODN) drugs is still needed for future clinical translation of anti-STAT3 therapies. We engineered and tested a novel ODN duplex/gold nanoparticle (AuNP)-based system carrying a therapeutic STAT3 decoy (STAT3d) payload. This strategy is two-pronged because of the additive STAT3 antagonism and radiosensitizing properties of AuNP. The specificity to head and neck cancer cell surface was imparted by using a nucleolin aptamer (NUAP) that was linked to AuNP for taking the advantage of an aberrant presentation of a nuclear protein nucleolin on the cell surface. STAT3d and nucleolin aptamer constructs were independently linked to AuNPs via Au-S bonds. The synthesized AuNP constructs (AuNP-NUAP-STAT3d) exhibited internalization in cells that was quantified by using radiolabeled STAT3d. AuNP-NUAP-STAT3d showed radiosensitizing effect in human HNC FaDu cell culture experiments that resulted in an increase of cell DNA damage as determined by measuring γ-H2AX phosphorylation levels by flow cytometry. The radiosensitization study also demonstrated that AuNP-NUAP-STAT3d as well as STAT3d alone resulted in the efficient inhibition of A431 cell proliferation. While FaDu cells did not show instant proliferation inhibition after incubating with AuNP-NUAP-STAT3d, the cell DNA damage in these cells showed nearly a 50% increase in AuNP-NUAP-STAT3d group after treating with radiation. Compared with anti-EGFR humanized antibody (Cetuximab), AuNP-NUAP-STAT3d system had an overall stronger radiosensitization effect in both A431 and FaDu cells.
Collapse
Affiliation(s)
- Surong Zhang
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester MA, USA
| | - Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| |
Collapse
|
54
|
Fu XL, Duan W, Su CY, Mao FY, Lv YP, Teng YS, Yu PW, Zhuang Y, Zhao YL. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol Immunother 2017; 66:1597-1608. [PMID: 28828629 PMCID: PMC11028627 DOI: 10.1007/s00262-017-2052-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Interleukin 6 (IL-6) was abundant in the tumor microenvironment and played potential roles in tumor progression. In our study, the expression of IL-6 in tumor tissues from 36 gastric cancer (GC) patients was significantly higher than in non-tumor tissues. Moreover, the number of CD163+CD206+ M2 macrophages that infiltrated in tumor tissues was significantly greater than those infiltrated in non-tumor tissues. The frequencies of M2 macrophages were positively correlated with the IL-6 expression in GC tumors. We also found that IL-6 could induce normal macrophages to differentiate into M2 macrophages with higher IL-10 and TGF-β expression, and lower IL-12 expression, via activating STAT3 phosphorylation. Accordingly, knocking down STAT3 using small interfering RNA decreased the expression of M2 macrophages-related cytokines (IL-10 and TGF-β). Furthermore, supernatants from IL-6-induced M2 macrophages promote GC cell proliferation and migration. Moreover, IL-6 production and CD163+CD206+ M2 macrophage infiltration in tumors were associated with disease progression and reduced GC patient survival. In conclusion, our data indicate that IL-6 induces M2 macrophage differentiation (IL-10highTGF-βhighIL-12 p35low ) by activating STAT3 phosphorylation, and the IL-6-induced M2 macrophages exert a pro-tumor function by promoting GC cell proliferation and migration.
Collapse
Affiliation(s)
- Xiao-Long Fu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Wei Duan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Chong-Yu Su
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Fang-Yuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Yi-Ping Lv
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Yong-Sheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Pei-Wu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
55
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
56
|
High Content Imaging Assays for IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Methods Mol Biol 2017; 1683:229-244. [PMID: 29082496 DOI: 10.1007/978-1-4939-7357-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the canonical STAT3 signaling pathway, IL-6 receptor engagement leads to the recruitment of latent STAT3 to the activated IL-6 complex and the associated Janus kinase (JAK) phosphorylates STAT3 at Y705. pSTAT3-Y705 dimers traffic into the nucleus and bind to specific DNA response elements in the promoters of target genes to regulate their transcription. However, IL-6 receptor activation induces the phosphorylation of both the Y705 and S727 residues of STAT3, and S727 phosphorylation is required to achieve maximal STAT3 transcriptional activity. STAT3 continuously shuttles between the nucleus and cytoplasm and maintains a prominent nuclear presence that is independent of Y705 phosphorylation. The constitutive nuclear entry of un-phosphorylated STAT3 (U-STAT3) drives expression of a second round of genes by a mechanism distinct from that used by pSTAT3-Y705 dimers. The abnormally elevated levels of U-STAT3 produced by the constitutive activation of pSTAT3-Y705 observed in many tumors drive the expression of an additional set of pSTAT3-independent genes that contribute to tumorigenesis. In this chapter, we describe the HCS assay methods to measure IL-6-induced STAT3 signaling pathway activation in head and neck tumor cell lines as revealed by the expression and subcellular distribution of pSTAT3-Y705, pSTAT3-S727, and U-STAT3. Only the larger dynamic range provided by the pSTAT3-Y705 antibody would be robust and reproducible enough for screening.
Collapse
|
57
|
Novel Molecular Targets for Chemoprevention in Malignancies of the Head and Neck. Cancers (Basel) 2017; 9:cancers9090113. [PMID: 28858212 PMCID: PMC5615328 DOI: 10.3390/cancers9090113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers of the head and neck region are among the leading causes of cancer-related mortalities worldwide. Oral leukoplakia and erythroplakia are identified as precursor lesions to malignancy. Patients cured of an initial primary head and neck cancer are also susceptible to developing second primary tumors due to cancerization of their mucosal field. Multi-step acquisition of genetic mutations leading to tumorigenesis and development of invasive cancer has been previously described. Recently, whole exome sequencing of tumor specimens has helped to identify driver mutations in this disease. For these reasons, chemoprevention or the use of systemic or biologic agents to prevent carcinogenesis is an attractive concept in head and neck cancers. Nonetheless, despite extensive clinical research in this field over the past couple decades, no standard of care option has emerged. This review article reports on targeted interventions that have been attempted in clinical trials to date, and focuses on novel molecular pathways and drugs in development that are worthy of being tested for this indication as part of future endeavors.
Collapse
|
58
|
Zhang T, Zhang D. Integrating omics data and protein interaction networks to prioritize driver genes in cancer. Oncotarget 2017; 8:58050-58060. [PMID: 28938536 PMCID: PMC5601632 DOI: 10.18632/oncotarget.19481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Although numerous approaches have been proposed to discern driver from passenger, identification of driver genes remains a critical challenge in the cancer genomics field. Driver genes with low mutated frequency tend to be filtered in cancer research. In addition, the accumulation of different omics data necessitates the development of algorithmic frameworks for nominating putative driver genes. In this study, we presented a novel framework to identify driver genes through integrating multi-omics data such as somatic mutation, gene expression, and copy number alterations. We developed a computational approach to detect potential driver genes by virtue of their effect on their neighbors in network. Application to three datasets (head and neck squamous cell carcinoma (HNSC), thyroid carcinoma (THCA) and kidney renal clear cell carcinoma (KIRC)) from The Cancer Genome Atlas (TCGA), by comparing the Precision, Recall and F1 score, our method outperformed DriverNet and MUFFINN in all three datasets. In addition, our method was less affected by protein length compared with DriverNet. Lastly, our method not only identified the known cancer genes but also detected the potential rare drivers (PTPN6 in THCA, SRC, GRB2 and PTPN6 in KIRC, MAPK1 and SMAD2 in HNSC).
Collapse
Affiliation(s)
- Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Di Zhang
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
59
|
Sen M, Johnston PA, Pollock NI, DeGrave K, Joyce SC, Freilino ML, Hua Y, Camarco DP, Close DA, Huryn DM, Wipf P, Grandis JR. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J Chem Biol 2017; 10:129-141. [PMID: 28684999 DOI: 10.1007/s12154-017-0169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kara DeGrave
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sonali C Joyce
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David A Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94118 USA.,Clinical and Translational Science Institute, University of California, San Francisco, Box 0558, 550 16th Street, San Francisco, CA 94143 USA
| |
Collapse
|
60
|
Gao J, Chen J, Cai M, Xu H, Jiang J, Tong T, Wang H. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy. Methods Appl Fluoresc 2017; 5:024004. [DOI: 10.1088/2050-6120/aa6ab5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
61
|
Role of let-7 family microRNA in breast cancer. Noncoding RNA Res 2016; 1:77-82. [PMID: 30159414 PMCID: PMC6096426 DOI: 10.1016/j.ncrna.2016.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 10/29/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis and resistance to therapy significantly contribute to cancer-related deaths. Growing body of evidence suggest that altered expression of microRNAs (miRNAs) is one of the root cause of adverse clinical outcome. miRNAs such as let-7 are the new fine tuners of signaling cascade and cellular processes which regulates the genes in post-transcriptional manner. In this review, we described the regulation of let-7 expression and the involvement of molecular factors in this process. We discussed the mechanism by which let-7 alter the expression of genes involved in the process of tumorigenesis. Further, we listed the pathways targeted by let-7 to reduce the burden of the tumor. In addition, we described the role of let-7 in breast cancer metastasis and stemness properties. This article will provide the in-depth insight into the biology of let-7 miRNA and its role in the breast cancer progression.
Collapse
|
62
|
Oi T, Asanuma K, Matsumine A, Matsubara T, Nakamura T, Iino T, Asanuma Y, Goto M, Okuno K, Kakimoto T, Yada Y, Sudo A. STAT3 inhibitor, cucurbitacin I, is a novel therapeutic agent for osteosarcoma. Int J Oncol 2016; 49:2275-2284. [PMID: 27840900 PMCID: PMC5117998 DOI: 10.3892/ijo.2016.3757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
The development of clinical agents remains a costly and time-consuming process. Although identification of new uses of existing drugs has been recognized as a more efficient approach for drug discovery than development of novel drugs, little screening of drugs that might be used for a rare malignant tumor such as osteosarcoma (OS) has been performed. In this study, we attempted to identify new molecular targeted agents for OS by employing Screening Committee of Anticancer Drugs (SCADS) kits. To screen compounds for OS treatment, their effect on cell viability of the OS cell lines 143B, MG63, HOS, SAOS-2, and HUO9 were evaluated. Candidate drugs were narrowed down based on a global anti-proliferative effect against these five OS cell lines. After excluding cytotoxic compounds and compounds unsuitable for in vivo administration, cucurbitacin I was extracted. Cucurbitacin I has been found to have cytotoxic and anti-proliferative properties against several tumors through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Cucurbitacin I dose- and time-dependently inhibited the proliferation of all five OS cell lines. Following cucurbitacin I treatment, STAT3 was inactivated and analysis of Mcl-1, cleaved PARP and caspase-3 indicated apoptosis induction. Expression of cell cycle regulator proteins, such as phospho-cyclin D1, c-Myc and survivin, were suppressed. Finally, cucurbitacin I potently inhibited the tumor growth of human OS 143B cells in nude mice. Our in vitro and in vivo results suggest that STAT3 inhibition by cucurbitacin I will be an effective and new approach for the treatment of OS.
Collapse
Affiliation(s)
- Toru Oi
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Akihiko Matsumine
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takao Matsubara
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takahiro Iino
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yumiko Asanuma
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Mikinobu Goto
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kazuma Okuno
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takuya Kakimoto
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuki Yada
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
63
|
Gu YL, Gao GQ, Ma N, Ye LL, Zhang LW, Gao X, Zhang ZB. CNTF protects neurons from hypoxic injury through the activation of STAT3pTyr705. Int J Mol Med 2016; 38:1915-1921. [DOI: 10.3892/ijmm.2016.2769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
|
64
|
Ferris RL, Geiger JL, Trivedi S, Schmitt NC, Heron DE, Johnson JT, Kim S, Duvvuri U, Clump DA, Bauman JE, Ohr JP, Gooding WE, Argiris A. Phase II trial of post-operative radiotherapy with concurrent cisplatin plus panitumumab in patients with high-risk, resected head and neck cancer. Ann Oncol 2016; 27:2257-2262. [PMID: 27733374 DOI: 10.1093/annonc/mdw428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Treatment intensification for resected, high-risk, head and neck squamous cell carcinoma (HNSCC) is an area of active investigation with novel adjuvant regimens under study. In this trial, the epidermal growth-factor receptor (EGFR) pathway was targeted using the IgG2 monoclonal antibody panitumumab in combination with cisplatin chemoradiotherapy (CRT) in high-risk, resected HNSCC. PATIENTS AND METHODS Eligible patients included resected pathologic stage III or IVA squamous cell carcinoma of the oral cavity, larynx, hypopharynx, or human-papillomavirus (HPV)-negative oropharynx, without gross residual tumor, featuring high-risk factors (margins <1 mm, extracapsular extension, perineural or angiolymphatic invasion, or ≥2 positive lymph nodes). Postoperative treatment consisted of standard RT (60-66 Gy over 6-7 weeks) concurrent with weekly cisplatin 30 mg/m2 and weekly panitumumab 2.5 mg/kg. The primary endpoint was progression-free survival (PFS). RESULTS Forty-six patients were accrued; 44 were evaluable and were analyzed. The median follow-up for patients without recurrence was 49 months (range 12-90 months). The probability of 2-year PFS was 70% (95% CI = 58%-85%), and the probability of 2-year OS was 72% (95% CI = 60%-87%). Fourteen patients developed recurrent disease, and 13 (30%) of them died. An additional five patients died from causes other than HNSCC. Severe (grade 3 or higher) toxicities occurred in 14 patients (32%). CONCLUSIONS Intensification of adjuvant treatment adding panitumumab to cisplatin CRT is tolerable and demonstrates improved clinical outcome for high-risk, resected, HPV-negative HNSCC patients. Further targeted monoclonal antibody combinations are warranted. REGISTERED CLINICAL TRIAL NUMBER NCT00798655.
Collapse
Affiliation(s)
- R L Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh .,Departments of Otolaryngology, Division of Head and Neck Surgery.,Immunology
| | - J L Geiger
- Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - S Trivedi
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - N C Schmitt
- Department of Otolaryngology, Johns Hopkins University, Baltimore.,Tumor Biology Section, National Institute of Deafness and Communication Disorders, National Institutes of Health, Bethesda
| | - D E Heron
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Departments of Otolaryngology, Division of Head and Neck Surgery.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, USA
| | - J T Johnson
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - S Kim
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - U Duvvuri
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - D A Clump
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Department of Otolaryngology, Johns Hopkins University, Baltimore
| | - J E Bauman
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - J P Ohr
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - W E Gooding
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh
| | - A Argiris
- Department of Medical Oncology, Hygeia Hospital, Athens, Greece.,Department of Medical Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
65
|
Kim LH, Shin JA, Jang B, Yang IH, Won DH, Jeong JH, Chung TH, Cho NP, Cho SD. Sorafenib potentiates ABT-737-induced apoptosis in human oral cancer cells. Arch Oral Biol 2016; 73:1-6. [PMID: 27632413 DOI: 10.1016/j.archoralbio.2016.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.
Collapse
Affiliation(s)
- Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Ji-Ae Shin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Alkek Building for Biomedical Research, Houston, TX, 77030, USA
| | - Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Dong-Hoon Won
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Joseph H Jeong
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tae-Ho Chung
- Department of Animal Resources Science, Joongbu University, Chungnam, 32713, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable material, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54986, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
66
|
Kang J, Chong SJF, Ooi VZQ, Vali S, Kumar A, Kapoor S, Abbasi T, Hirpara JL, Loh T, Goh BC, Pervaiz S. Overexpression of Bcl-2 induces STAT-3 activation via an increase in mitochondrial superoxide. Oncotarget 2016; 6:34191-205. [PMID: 26430964 PMCID: PMC4741445 DOI: 10.18632/oncotarget.5763] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
We recently reported a novel interaction between Bcl-2 and Rac1 and linked that to the ability of Bcl-2 to induce a pro-oxidant state in cancer cells. To gain further insight into the functional relevance of this interaction, we utilized computer simulation based on the protein pathway dynamic network created by Cellworks Group Inc. STAT3 was identified among targets that positively correlated with Rac1 and/or Bcl-2 expression levels. Validating this, the activation level of STAT3, as marked by p-Tyr705, particularly in the mitochondria, was significantly higher in Bcl-2-overexpressing cancer cells. Bcl-2-induced STAT3 activation was a function of GTP-loaded Rac1 and NADPH oxidase (Nox)-dependent increase in intracellular superoxide (O2•−). Furthermore, ABT199, a BH-3 specific inhibitor of Bcl-2, as well as silencing of Bcl-2 blocked STAT3 phosphorylation. Interestingly, while inhibiting intracellular O2•− blocked STAT3 phosphorylation, transient overexpression of wild type STAT3 resulted in a significant increase in mitochondrial O2•− production, which was rescued by the functional mutants of STAT3 (Y705F). Notably, a strong correlation between the expression and/or phosphorylation of STAT3 and Bcl-2 was observed in primary tissues derived from patients with different sub-sets of B cell lymphoma. These data demonstrate the presence of a functional crosstalk between Bcl-2, Rac1 and activated STAT3 in promoting a permissive redox milieu for cell survival. Results also highlight the potential utility of a signature involving Bcl-2 overexpression, Rac1 activation and STAT3 phosphorylation for stratifying clinical lymphomas based on disease severity and chemoresistance.
Collapse
Affiliation(s)
- Jia Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vignette Zi Qi Ooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Ansu Kumar
- Cellworks Research India Private Limited, Bangalore, India
| | - Shweta Kapoor
- Cellworks Research India Private Limited, Bangalore, India
| | | | - Jayshree L Hirpara
- Experimental Therapeutics Program, Cancer Science Institute, Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University Healthcare System, Singapore, Singapore
| | - Boon Cher Goh
- Experimental Therapeutics Program, Cancer Science Institute, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,School of Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
67
|
Johnston PA, Sen M, Hua Y, Camarco DP, Shun TY, Lazo JS, Wilson GM, Resnick LO, LaPorte MG, Wipf P, Huryn DM, Grandis JR. HCS campaign to identify selective inhibitors of IL-6-induced STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 2016; 13:356-76. [PMID: 26317883 DOI: 10.1089/adt.2015.663] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Signal transducer and activator of transcription factor 3 (STAT3) is hyperactivated in head and neck squamous cell carcinomas (HNSCC). Cumulative evidence indicates that IL-6 production by HNSCC cells and/or stromal cells in the tumor microenvironment activates STAT3 and contributes to tumor progression and drug resistance. A library of 94,491 compounds from the Molecular Library Screening Center Network (MLSCN) was screened for the ability to inhibit interleukin-6 (IL-6)-induced pSTAT3 activation. For contractual reasons, the primary high-content screening (HCS) campaign was conducted over several months in 3 distinct phases; 1,068 (1.1%) primary HCS actives remained after cytotoxic or fluorescent outliers were eliminated. One thousand one hundred eighty-seven compounds were cherry-picked for confirmation; actives identified in the primary HCS and compounds selected by a structural similarity search of the remaining MLSCN library using hits identified in phases I and II of the screen. Actives were confirmed in pSTAT3 IC50 assays, and an IFNγ-induced pSTAT1 activation assay was used to prioritize selective inhibitors of STAT3 activation that would not inhibit STAT1 tumor suppressor functions. Two hundred three concentration-dependent inhibitors of IL-6-induced pSTAT3 activation were identified and 89 of these also produced IC50s against IFN-γ-induced pSTAT1 activation. Forty-nine compounds met our hit criteria: they reproducibly inhibited IL-6-induced pSTAT3 activation by ≥70% at 20 μM; their pSTAT3 activation IC50s were ≤25 μM; they were ≥2-fold selective for pSTAT3 inhibition over pSTAT1 inhibition; a cross target query of PubChem indicated that they were not biologically promiscuous; and they were ≥90% pure. Twenty-six chemically tractable hits that passed filters for nuisance compounds and had acceptable drug-like and ADME-Tox properties by computational evaluation were purchased for characterization. The hit structures were distributed among 5 clusters and 8 singletons. Twenty-four compounds inhibited IL-6-induced pSTAT3 activation with IC50s ≤20 μM and 13 were ≥3-fold selective versus inhibition of pSTAT1 activation. Eighteen hits inhibited the growth of HNSCC cell lines with average IC50s ≤ 20 μM. Four chemical series were progressed into lead optimization: the guanidinoquinazolines, the triazolothiadiazines, the amino alcohols, and an oxazole-piperazine singleton.
Collapse
Affiliation(s)
- Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania.,3 Pittsburgh Specialized Application Center, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| | - Malabika Sen
- 4 Department of Otolaryngology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel P Camarco
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Tong Ying Shun
- 3 Pittsburgh Specialized Application Center, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| | - John S Lazo
- 5 Departments of Pharmacology and Chemistry, University of Virginia , Charlottesville, Virginia
| | - Gabriela Mustata Wilson
- 6 University of Pittsburgh Chemical Diversity Center , Pittsburgh, Pennsylvania.,7 Department of Health Services and Health Administration, College of Nursing and Health Professions, University of Southern Indiana , Evansville, Indiana
| | - Lynn O Resnick
- 6 University of Pittsburgh Chemical Diversity Center , Pittsburgh, Pennsylvania
| | - Matthew G LaPorte
- 6 University of Pittsburgh Chemical Diversity Center , Pittsburgh, Pennsylvania
| | - Peter Wipf
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania.,6 University of Pittsburgh Chemical Diversity Center , Pittsburgh, Pennsylvania.,8 Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Donna M Huryn
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 University of Pittsburgh Chemical Diversity Center , Pittsburgh, Pennsylvania
| | - Jennifer R Grandis
- 9 Clinical and Translational Science Institute, Otolaryngology - Head and Neck Surgery, University of California , San Francisco, California
| |
Collapse
|
68
|
Lee BR, Kwon BE, Hong EH, Shim A, Song JH, Kim HM, Chang SY, Kim YJ, Kweon MN, Youn JI, Ko HJ. Interleukin-10 attenuates tumour growth by inhibiting interleukin-6/signal transducer and activator of transcription 3 signalling in myeloid-derived suppressor cells. Cancer Lett 2016; 381:156-64. [PMID: 27431309 DOI: 10.1016/j.canlet.2016.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
Interleukin-10 (IL-10) is a well-characterized anti-inflammatory cytokine, but its role in anti-cancer immunity is controversial. After injection with TC-1 cancer cells, we observed more rapid tumour growth and significantly higher interleukin-6 (IL-6) production in IL-10 knockout (IL-10(-/-)) mice than wild-type (WT) mice. Blocking IL-6 with an anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) inhibited tumour growth and myeloid-derived suppressor cell (MDSC) generation, which were significantly increased in IL-10-deficient mice. MDSCs and tumour cells from IL-10(-/-) mice had increased phosphorylated signal transducer and activator of transcription 3 (p-STAT3) levels. Treatment with a STAT3 inhibitor, S3I, reduced tumour growth, inhibited MDSC expansion, reduced IL-6 in tumours, and relieved T cell suppression. The combination of anti-IL-6R mAb and S3I further inhibited tumour growth compared to S3I treatment alone. These results suggested that the inhibition of the IL-6/STAT3 signalling axis is a candidate anti-cancer strategy, especially under systemic inflammatory conditions with high IL-6.
Collapse
Affiliation(s)
- Bo-Ra Lee
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Aeri Shim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Hong-Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, South Korea
| | - Yeon-Jeong Kim
- College of Pharmacy, Inje University, Gimhae 50834, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Lab., Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea
| | - Je-In Youn
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080 South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
69
|
LaPorte MG, Wang Z, Colombo R, Garzan A, Peshkov VA, Liang M, Johnston PA, Schurdak ME, Sen M, Camarco DP, Hua Y, Pollock NI, Lazo JS, Grandis JR, Wipf P, Huryn DM. Optimization of pyrazole-containing 1,2,4-triazolo-[3,4-b]thiadiazines, a new class of STAT3 pathway inhibitors. Bioorg Med Chem Lett 2016; 26:3581-5. [PMID: 27381083 DOI: 10.1016/j.bmcl.2016.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Structure-activity relationship studies of a 1,2,4-triazolo-[3,4-b]thiadiazine scaffold, identified in an HTS campaign for selective STAT3 pathway inhibitors, determined that a pyrazole group and specific aryl substitution on the thiadiazine were necessary for activity. Improvements in potency and metabolic stability were accomplished by the introduction of an α-methyl group on the thiadiazine. Optimized compounds exhibited anti-proliferative activity, reduction of phosphorylated STAT3 levels and effects on STAT3 target genes. These compounds represent a starting point for further drug discovery efforts targeting the STAT3 pathway.
Collapse
Affiliation(s)
- Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhuzhu Wang
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raffaele Colombo
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Atefeh Garzan
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vsevolod A Peshkov
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mary Liang
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Mark E Schurdak
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA; University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94158, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA; University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
70
|
Peyser ND, Wang L, Zeng Y, Acquafondata M, Freilino M, Li H, Sen M, Gooding WE, Satake M, Wang Z, Johnson DE, Grandis JR. STAT3 as a Chemoprevention Target in Carcinogen-Induced Head and Neck Squamous Cell Carcinoma. Cancer Prev Res (Phila) 2016; 9:657-63. [PMID: 27267892 DOI: 10.1158/1940-6207.capr-16-0089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal disease due, in large part, to a high rate of second primary tumor (SPT) formation. The 4-nitroquinoline 1-oxide (4-NQO) mouse model of oral carcinogenesis provides a robust system in which to study chemopreventive agents in the context of chemically induced HNSCC tumors. STAT3 is a potent oncogene that is hyperactivated by tyrosine phosphorylation early in HNSCC carcinogenesis and is a rational therapeutic target. We recently reported that loss-of-function of the STAT3 phosphatase PTPRT promotes STAT3 activation in HNSCC tumors and preclinical models and may serve as a predictive biomarker of response to STAT3 inhibitors, including the small-molecule Stattic. We therefore investigated the hypothesis that Ptprt-knockout (KO) mice would be more susceptible to 4-NQO-induced oral carcinogenesis and more sensitive to Stattic-mediated chemoprevention compared with wild-type (WT) mice. Herein, we demonstrate that Ptprt WT and KO mice develop similar spectra of HNSCC disease severity upon 12 weeks of 4-NQO administration, with no apparent effect of Ptprt genotype on carcinogenesis or treatment outcome. Targeting of STAT3 with Stattic resulted in a chemopreventive effect against 4-NQO-induced oral cancer (P = 0.0402). While these results do not support a central role for PTPRT in 4-NQO-induced HNSCC carcinogenesis, further investigation of STAT3 as a chemoprevention target in this cancer is warranted. Cancer Prev Res; 9(8); 657-63. ©2016 AACR.
Collapse
Affiliation(s)
- Noah D Peyser
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Lin Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Marie Acquafondata
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Maria Freilino
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Malabika Sen
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - William E Gooding
- Department of Otolaryngology and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio. Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Daniel E Johnson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
71
|
Noy N, Li L, Abola MV, Berger NA. Is retinol binding protein 4 a link between adiposity and cancer? Horm Mol Biol Clin Investig 2016; 23:39-46. [PMID: 26136304 DOI: 10.1515/hmbci-2015-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/23/2015] [Indexed: 01/30/2023]
Abstract
Retinol binding protein 4 (RBP4) is synthesized in the liver where it binds vitamin A, retinol, and transports it to tissues throughout the body. It has been shown in some studies that the level of circulating RBP4 increases with body mass, and the protein has been implicated as a mediator in the development of insulin resistance and the metabolic disease. Adipose tissue serves as another site of RBP4 synthesis, accounting for its designation as an adipokine. In addition to its function as a transport protein, RBP4 serves as a signaling molecule which, by binding to the membrane receptor STRA6, triggers downstream activation of pro-oncogenic pathways including JAK2/STAT3/5. Taken together, available information suggests the possibility that RBP4 may be a link between obesity and cancer.
Collapse
|
72
|
|
73
|
Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G, Sklavounou A. JNK1/2 expression and modulation of STAT3 signaling in oral cancer. Oncol Lett 2016; 12:699-706. [PMID: 27347203 DOI: 10.3892/ol.2016.4614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/22/2016] [Indexed: 01/24/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that link extracellular stimuli with intracellular responses and participate in numerous cellular processes such as growth, proliferation, differentiation, inflammation and apoptosis. Persistent activation of signal transducer and activator of transcription 3 (STAT3), which is accompanied by increases in STAT3 tyrosine phosphorylation, is associated with cell proliferation, differentiation and apoptosis in oral squamous cell carcinoma (OSCC). The role and significance of the activation of MAPKs, particularly of c-Jun N-terminal kinase (JNK), on STAT3 signaling in OSCC have not been thoroughly investigated. The present study examines the effects of JNK1/2 modulation on STAT3 signaling and cellular activities in OSCC cells. The expression levels of STAT3 [total, tyrosine phosphorylated (p-Tyr) and serine phosphorylated (p-Ser)], JNK, c-Jun and cyclin D1 were assessed in the OSCC cell lines SCC25 and SCC9. Inhibition of JNK1/2 was achieved by pharmacological agents (SP600125) and by small interfering RNA (siRNA) silencing, while JNK1/2 was induced by active MAPK kinase 7. Cell proliferation and viability rates were also evaluated. Inhibition of JNK1/2 with either SP600125 treatment or specific siRNA silencing resulted in decreased levels of p-Ser STAT3 and increased levels of p-Tyr STAT3 and cyclin D1 in both cell lines. Furthermore, JNK1/2 inhibition resulted in a dose-dependent increase in cell growth and viability in both cell lines. Opposite results were observed with JNK1/2 induction in both cell lines. The present results are supportive of a potential tumor suppressive role of JNK1/2 signaling in OSCC, which may be mediated through negative crosstalk with the oncogenic STAT3 signaling pathway. The possible therapeutic implications of JNK1/2 inhibition for patients with OSCC require to be investigated.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Nikitakis
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Karanikou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Rassidakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Pathology and Medicine, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
74
|
SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene 2016; 35:5826-5838. [PMID: 27181202 PMCID: PMC5116054 DOI: 10.1038/onc.2016.124] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/01/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Hyperphosphorylation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including head and neck cancer (HNC). Although smoking is critical in the development and progression of HNC, how tobacco components activate STAT3 is unclear. We demonstrated that exposure of HNC cell lines to a tobacco extract induced a rapid Y705 phosphorylation of STAT3 and a rapid increase in the SUMO protease SENP3 that depended on a simultaneous increase in reactive oxygen species. We identified that SUMOylation at the lysine 451 site facilitated STAT3 binding to the phosphatase TC45 through an SUMO-interacting motif of TC45. SENP3 could thus enhance STAT3 phosphorylation by de-conjugating the SUMO2/3 modification of STAT3. Knocking-down of SENP3 greatly impaired basal and induced STAT3 phosphorylation by tobacco extract or interleukin 6. A correlation between SENP3 protein levels and STAT3 Y705 phosphorylation levels in human laryngeal carcinoma specimens was found, which was more significant in the specimens derived from the smoker patients and with poor clinicopathological parameters. Our data identified SUMOylation as a previously undescribed post-translational modification of STAT3 and SENP3 as a critical positive modulator of tobacco- or cytokine-induced STAT3 activation. These findings provide novel insights into the hyperphosphorylation of STAT3 in development of HNC.
Collapse
|
75
|
Jia L, Song Q, Zhou C, Li X, Pi L, Ma X, Li H, Lu X, Shen Y. Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling. PLoS One 2016; 11:e0147157. [PMID: 26784960 PMCID: PMC4718674 DOI: 10.1371/journal.pone.0147157] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
Developing drugs that can effectively block STAT3 activation may serve as one of the most promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that can be safely and effectively used in clinic. In the present study, we investigated the potential of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on STAT3 activation along with its underlying mechanisms were studied in HNSCC cells. The antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also implemented. DHA exhibited remarkable and specific inhibitory effects on STAT3 activation via selectively blocking Jak2/STAT3 signaling. Besides, DHA significantly inhibited HNSCC growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and effective drug for cancer treatment and therapeutic sensitization in HNSCC patients.
Collapse
Affiliation(s)
- Lifeng Jia
- Postgraduate School, The Third Medical Military University, Chongqing, 400038, China
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081, Hebei Province, China
| | - Qi Song
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081, Hebei Province, China
- Postgraduate School, Medical College of PLA, Beijing, 100700, China
| | - Chenyang Zhou
- Postgraduate School, The Third Medical Military University, Chongqing, 400038, China
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081, Hebei Province, China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081, Hebei Province, China
- * E-mail:
| | - Lihong Pi
- Department of Otolaryngology, Hebei General Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Xiuru Ma
- Department of Basic Sciences, Hebei College of Traditional Chinese Medicine, Shijiazhuang, 050061, Hebei Province, China
| | - Hui Li
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, 050081, Hebei, Province, China
| | - Xiuying Lu
- Postgraduate School, The Third Medical Military University, Chongqing, 400038, China
| | - Yupeng Shen
- Postgraduate School, The Third Medical Military University, Chongqing, 400038, China
| |
Collapse
|
76
|
Geiger JL, Grandis JR, Bauman JE. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol 2015; 56:84-92. [PMID: 26733183 DOI: 10.1016/j.oraloncology.2015.11.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/12/2015] [Accepted: 11/27/2015] [Indexed: 02/08/2023]
Abstract
Proteins of the signal transducer and activator of transcription (STAT) family mediate cellular responses to cytokines and growth factors. Aberrant regulation of the STAT3 oncogene contributes to tumor formation and progression in many cancers, including head and neck squamous cell carcinoma (HNSCC), where hyperactivation of STAT3 is implicated in both treatment resistance and immune escape. There are no oncogenic gain-of-function mutations in HNSCC. Rather, aberrant STAT3 signaling is primarily driven by upstream growth factor receptors, such as Janus kinase (JAK) and epidermal growth factor receptor (EGFR). Moreover, genomic silencing of select protein tyrosine phosphatase receptors (PTPRs), tumor suppressors that dephosphorylate STAT3, may lead to prolonged phosphorylation and activation of STAT3. This review will summarize current knowledge of the STAT3 pathway and its contribution to HNSCC growth, survival, and resistance to standard therapies, and discuss STAT3-targeting agents in various phases of clinical development.
Collapse
Affiliation(s)
- Jessica L Geiger
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Jennifer R Grandis
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, United States
| | - Julie E Bauman
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
77
|
Sen M, Pollock NI, Black J, DeGrave KA, Wheeler S, Freilino ML, Joyce S, Lui VWY, Zeng Y, Chiosea SI, Grandis JR. JAK kinase inhibition abrogates STAT3 activation and head and neck squamous cell carcinoma tumor growth. Neoplasia 2015; 17:256-64. [PMID: 25810010 PMCID: PMC4372647 DOI: 10.1016/j.neo.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 3 has been implicated in cell proliferation and survival of many cancers including head and neck squamous cell carcinoma (HNSCC). AZD1480, an orally active pharmacologic inhibitor of JAK1/JAK2, has been tested in several cancer models. In the present study, the in vitro and in vivo effects of AZD1480 were evaluated in HNSCC preclinical models to test the potential use of JAK kinase inhibition for HNSCC therapy. AZD1480 treatment decreased HNSCC proliferation in HNSCC cell lines with half maximal effective concentration (EC50) values ranging from 0.9 to 4 μM in conjunction with reduction of pSTAT3Tyr705 expression. In vivo antitumor efficacy of AZD1480 was demonstrated in patient-derived xenograft (PDX) models derived from two independent HNSCC tumors. Oral administration of AZD1480 reduced tumor growth in conjunction with decreased pSTAT3Tyr705 expression that was observed in both PDX models. These findings suggest that the JAK1/2 inhibitors abrogate STAT3 signaling and may be effective in HNSCC treatment approaches.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Black
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara A DeGrave
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah Wheeler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sonali Joyce
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yan Zeng
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simion I Chiosea
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
78
|
Tarayrah L, Li Y, Gan Q, Chen X. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity. Biol Open 2015; 4:1518-27. [PMID: 26490676 PMCID: PMC4728359 DOI: 10.1242/bio.013961] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. Summary: This study provides new insights into the biological functions of a histone demethylase and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.
Collapse
Affiliation(s)
- Lama Tarayrah
- Department of Biology, 3400 North Charles Street, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | - Yuping Li
- Department of Biology, 3400 North Charles Street, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | - Qiang Gan
- Department of Biology, 3400 North Charles Street, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | - Xin Chen
- Department of Biology, 3400 North Charles Street, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| |
Collapse
|
79
|
Brown ME, Bear MD, Rosol TJ, Premanandan C, Kisseberth WC, London CA. Characterization of STAT3 expression, signaling and inhibition in feline oral squamous cell carcinoma. BMC Vet Res 2015; 11:206. [PMID: 26272737 PMCID: PMC4536595 DOI: 10.1186/s12917-015-0505-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) plays a critical role in tumor development by regulating signaling pathways involved in cell proliferation, survival, metastasis and angiogenesis. STAT3 is activated in many cancers, including head and neck squamous cell carcinoma (HNSCC) in people. Feline oral squamous cell carcinoma (OSCC) is similar to advanced or recurrent HNSCC as it is poorly responsive to traditional therapies and carries a poor long-term prognosis. The purpose of this study was to characterize expression and activation of STAT3 in feline OSCC cell lines and tumor samples and to investigate the biologic activity of a novel, allosteric STAT3 inhibitor, LLL12, in feline OSCC cell lines. Results We evaluated 3 feline OSCC cell lines and one of these (SCCF2) exhibited high levels of constitutive STAT3 phosphorylation and high sensitivity to LLL12 treatment. Exposure of SCCF2 cells to LLL12 resulted in decreased expression of pSTAT3 and total STAT3, apoptosis as assessed by caspase 3/7 activation, inhibition of colony formation and reduced expression of the STAT3 transcriptional target survivin. In contrast, the STAT3 transcriptional targets VEGF and MCL-1 increased after LLL12 treatment. This was, in part, likely due to LLL12 mediated upregulation of HIF-1α, which is known to drive VEGF and MCL-1 expression. The OSCC cell lines with low basal STAT3 phosphorylation did not exhibit these effects, suggesting that STAT3 inhibition was responsible for the observed results. Lastly, immunohistochemistry for pSTAT3 was performed using a feline OSCC tissue microarray, demonstrating expression in 48 % of samples tested. Conclusions These data demonstrate that LLL12 has biologic activity against a feline OSCC cell line expressing pSTAT3 and that STAT3 represents a target for therapeutic intervention in this disease. However, given the up-regulation of several STAT3 transcriptional targets following treatment, further investigation of STAT3 and its related signaling pathways in OSCC is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0505-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Megan E Brown
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Misty D Bear
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Chris Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
80
|
Singh M, Close DA, Mukundan S, Johnston PA, Sant S. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation. Assay Drug Dev Technol 2015; 13:570-83. [PMID: 26274587 DOI: 10.1089/adt.2015.662] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite significant investments in cancer research and drug discovery/development, the rate of new cancer drug approval is ≤5% and most cases of metastatic cancer remain incurable. Ninety-five percent of new cancer drugs fail in clinical development because of a lack of therapeutic efficacy and/or unacceptable toxicity. One of the major factors responsible for the low success rate of anticancer drug development is the failure of preclinical models to adequately recapitulate the complexity and heterogeneity of human cancer. For throughput and capacity reasons, high-throughput screening growth inhibition assays almost exclusively use two-dimensional (2D) monolayers of tumor cell lines cultured on tissue culture-treated plastic/glass surfaces in serum-containing medium. However, these 2D tumor cell line cultures fail to recapitulate the three-dimensional (3D) context of cells in solid tumors even though the tumor microenvironment has been shown to have a profound effect on anticancer drug responses. Tumor spheroids remain the best characterized and most widely used 3D models; however, spheroid sizes tend to be nonuniform, making them unsuitable for high-throughput drug testing. To circumvent this challenge, we have developed defined size microwell arrays using nonadhesive hydrogels that are applicable to a wide variety of cancer cell lines to fabricate size-controlled 3D microtumors. We demonstrate that the hydrogel microwell array platform can be applied successfully to generate hundreds of uniform microtumors within 3-6 days from many cervical and breast, as well as head and neck squamous cell carcinoma (HNSCC) cells. Moreover, controlling size of the microwells in the hydrogel array allows precise control over the size of the microtumors. Finally, we demonstrate the application of this platform technology to probe activation as well as inhibition of epidermal growth factor receptor (EGFR) signaling in 3D HNSCC microtumors in response to EGF and cetuximab treatments, respectively. We believe that the ability to generate large numbers of HNSCC microtumors of uniform size and 3D morphology using hydrogel arrays will provide more physiological in vitro 3D tumor models to investigate how tumor size influences signaling pathway activation and cancer drug efficacy.
Collapse
Affiliation(s)
- Manjulata Singh
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Shilpaa Mukundan
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Shilpa Sant
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
81
|
Schmitt NC, Trivedi S, Ferris RL. STAT1 Activation Is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells. Mol Cancer Ther 2015; 14:2103-11. [PMID: 26141950 DOI: 10.1158/1535-7163.mct-15-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGF receptor (EGFR) inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC.
Collapse
Affiliation(s)
- Nicole C Schmitt
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
82
|
|
83
|
Mali SB. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol 2015; 51:565-9. [PMID: 25817923 DOI: 10.1016/j.oraloncology.2015.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
STATs can be activated independently of JAKs, most notably by c-Src kinases. In cancer cells, STAT3 and STAT5 activation leads to the increased expression of downstream target genes, leading to increased cell proliferation, cell survival, angiogenesis, and immune system evasion. STAT3 and STAT5 are expressed and activated in head and neck squamous cell carcinoma where they contribute to cell survival and proliferation. STATs can be activated by a number of signal transduction pathways, including the epidermal growth factor receptor (EGFR), nicotinic receptor, interleukin (IL) receptor, and erythropoietin receptor pathways. Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumor progression is a promising strategy for cancer chemoprevention. Several approaches have been used to inhibit STAT3 in the hope of developing an antitumor agent. Although several STAT3-specific agents are promising, none are in clinical development, mostly because of drug delivery and stability issues.
Collapse
|
84
|
Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3. PLoS One 2015; 10:e0128406. [PMID: 26010889 PMCID: PMC4444003 DOI: 10.1371/journal.pone.0128406] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 01/24/2023] Open
Abstract
Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB), a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase) of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.
Collapse
|
85
|
Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol 2015; 6:214. [PMID: 25999952 PMCID: PMC4419853 DOI: 10.3389/fimmu.2015.00214] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/18/2015] [Indexed: 12/12/2022] Open
Abstract
The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.
Collapse
Affiliation(s)
- Sinem Esra Sahingur
- Department of Periodontics, Virginia Commonwealth University , Richmond, VA , USA ; Department of Microbiology and Immunology, Virginia Commonwealth University , Richmond, VA , USA
| | - W Andrew Yeudall
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Massey Cancer Center, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
86
|
Kobayashi K, Kobayashi Y, Nakamura M, Tamura O, Kogen H. Establishment of Relative and Absolute Configurations of Phaeosphaeride A: Total Synthesis of ent-Phaeosphaeride A. J Org Chem 2015; 80:1243-8. [DOI: 10.1021/jo5025046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichi Kobayashi
- Graduate
School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukiko Kobayashi
- Graduate
School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Misato Nakamura
- Graduate
School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Kogen
- Graduate
School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
87
|
Barik S, Banerjee S, Sarkar M, Bhuniya A, Roy S, Bose A, Baral R. Neem leaf glycoprotein optimizes effector and regulatory functions within tumor microenvironment to intervene therapeutically the growth of B16 melanoma in C57BL/6 mice. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.trivac.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Trivedi S, Concha-Benavente F, Srivastava RM, Jie HB, Gibson SP, Schmitt NC, Ferris RL. Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol 2015; 26:40-47. [PMID: 24997207 PMCID: PMC4269339 DOI: 10.1093/annonc/mdu156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022] Open
Abstract
The tumor antigen (TA)-targeted monoclonal antibodies (mAb) cetuximab and panitumumab target the human epidermal growth factor receptor and have been integrated into treatment regimens for advanced squamous cell carcinoma of the head and neck (SCCHN). The therapeutic efficacy of these mAbs has been found to be enhanced when combined with radiotherapy and chemotherapy. However, clinical trials indicate that these findings are limited to fewer than 20% of treated patients. Therefore, identifying patients who are likely to benefit from these agents is crucial to improving therapeutic strategies. Interestingly, it has been noted that TA-targeted mAbs mediate their effects by contributing to cell-mediated cytotoxicity in addition to inhibition of downstream signaling pathways. Here, we describe the potential immunogenic mechanisms underlying these clinical findings, their role in the varied clinical response and identify the putative biomarkers of antitumor activity. We review potential immunological biomarkers that affect mAb therapy in SCCHN patients, the implications of these findings and how they translate to the clinical scenario, which are critical to improving patient selection and ultimately outcomes for patients undergoing therapy.
Collapse
Affiliation(s)
- S Trivedi
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | | | - R M Srivastava
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - H B Jie
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - S P Gibson
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - N C Schmitt
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - R L Ferris
- Department of Otolaryngology, University of Pittsburgh School of Medicine; Department of Immunology, University of Pittsburgh; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| |
Collapse
|
89
|
Han X, Han Y, Jiao H, Jie Y. 14-3-3ζ regulates immune response through Stat3 signaling in oral squamous cell carcinoma. Mol Cells 2014; 38:112-21. [PMID: 25556369 PMCID: PMC4332029 DOI: 10.14348/molcells.2015.2101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023] Open
Abstract
Ectopic expression of 14-3-3ζ has been found in various malignancies, including lung cancer, liver cancer, head and neck squamous cell carcinoma (HNSCC), and so on. However, the effect of 14-3-3ζ in the regulation of interactions between tumor cells and the immune system has not been previously reported. In this study, we aimed to investigate whether and how 14-3-3ζ is implicated in tumor inflammation modulation and immune recognition evasion. In oral squamous cell carcinoma (OSCC) cell lines and cancer tissues, we found that 14-3-3ζ is overexpressed. In OSCC cells, 14-3-3ζ knockdown resulted in the up-regulated expression of inflammatory cytokines. In contrast, 14-3-3ζ introduction attenuated cytokine expression in human normal keratinocytes and fibroblasts stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Furthermore, supernatants from 14-3-3ζ knockdown OSCC cells dramatically altered the response of peritoneal macrophages, dendritic cells and tumor-specific T cells. Interestingly, Stat3 was found to directly interact with 14-3-3ζ and its disruption relieved the inhibition induced by 14-3-3ζ in tumor inflammation. Taken together, our studies provide evidence that 14-3-3ζ may regulate tumor inflammation and immune response through Stat3 signaling in OSCC.
Collapse
Affiliation(s)
- Xinguang Han
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Yongfu Han
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Huifeng Jiao
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | | |
Collapse
|
90
|
Han X, Han Y, Jiao H, Jie Y. 14-3-3ζ Regulates Immune Response through Stat3 Signaling in Oral Squamous Cell Carcinoma. Mol Cells 2014. [DOI: 10.14348/molcells.2015.02101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
91
|
Abstract
Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP). At some tissues, RBP is recognized by STRA6, a plasma membrane protein that serves a dual role: it transports retinol from extracellular RBP into cells and it transduces a signaling cascade mediated by the Janus kinase JAK2 and the transcription factors STAT3 and STAT5. We show here that expression of RBP and STRA6 is markedly upregulated in human breast and colon tumors, that holo-RBP/STRA6 signaling promotes oncogenic properties, and that STRA6 expression is critical for tumor formation by colon carcinoma cells in vivo. The holo-RBP/STRA6 pathway also efficiently induces fibroblasts to undergo oncogenic transformation, rendering them highly tumorigenic. These data establish that holo-RBP and its receptor STRA6 are potent oncogenes and suggest that the pathway is a novel target for therapy of some human cancers.
Collapse
Affiliation(s)
- Daniel C Berry
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, and Departments of Pharmacology and Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liraz Levi
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, and Departments of Pharmacology and Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Noa Noy
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, and Departments of Pharmacology and Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
92
|
Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods 2014; 71:38-43. [PMID: 25160651 DOI: 10.1016/j.ymeth.2014.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
STAT3 modulates the transcription of a wide variety of regulatory genes involved in cell proliferation, differentiation, migration, apoptosis, and other critical cellular functions. Constitutive activation of STAT3 has been detected in a wide spectrum of human malignancies. A pharmacophore model constructed from a training set of STAT3 inhibitors binding to the SH2 domain was used to screen an in-house database of compounds, from which azepine 1 emerged as a top candidate. Compound 1 inhibited STAT3 DNA-binding activity in vitro and attenuated STAT3-directed transcription in cellulo with comparable potency to the well-known STAT3 inhibitor S3I-201. A fluorescence polarization assay revealed that compound 1 targeted the SH2 domain of STAT3. Furthermore, compound 1 inhibited STAT3 phosphorylation in cells without affecting the total expression of STAT3. This study also validates the use of pharmacophore modeling to identify inhibitors of protein-protein interactions.
Collapse
|
93
|
GKOUVERIS IOANNIS, NIKITAKIS NIKOLAOS, KARANIKOU MARIA, RASSIDAKIS GEORGE, SKLAVOUNOU ALEXANDRA. Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol Rep 2014; 32:2175-82. [DOI: 10.3892/or.2014.3440] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/16/2014] [Indexed: 11/05/2022] Open
|
94
|
Dual-inhibitors of STAT5 and STAT3: studies from molecular docking and molecular dynamics simulations. J Mol Model 2014; 20:2399. [PMID: 25098340 DOI: 10.1007/s00894-014-2399-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Although molecularly targeted therapy with imatinib has improved treatments of chronic myeloid leukemia (CML), clinical resistance gradually develops in patients with accelerated or blast phase CML. The inability of imatinib to cure CML suggests that inactivation of BCR-ABL kinase activity alone is not sufficient to control the disease. Aberrant STAT signaling and constitutive STAT5 or STAT3 activation are frequently found in both acute and chronic leukemia. Constitutive activation of STAT5 and STAT3 are associated with imatinib resistance on leukemia cells. Development of drugs targeting SH2 domains of STAT5 and STAT3 provides a novel strategy for the treatment of the imatinib-resistant CML. Here, molecular docking and molecular dynamics simulations were used to investigate the interactions of the drugs targeting STAT3 and STAT5 receptors at molecular level. The calculated binding free energies are consistent with the ranking of the experimental affinities and our simulations also explained their differences in binding energy. Then virtual screening based on molecular docking and molecular dynamics was applied to screen a set of ~1500 compounds for dual inhibitors of the SH2 domains of STAT5 and STAT3. Three top score compounds obtained in virtual screening were compound 660, 304, and 561. Results show that the three predicted dual-inhibitors are well fitted within the two binding domains and are predicted to present improved STAT5 and STAT3 SH2 inhibitory activity.
Collapse
|
95
|
STAT3 in Cancer-Friend or Foe? Cancers (Basel) 2014; 6:1408-40. [PMID: 24995504 PMCID: PMC4190548 DOI: 10.3390/cancers6031408] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022] Open
Abstract
The roles and significance of STAT3 in cancer biology have been extensively studied for more than a decade. Mounting evidence has shown that constitutive activation of STAT3 is a frequent biochemical aberrancy in cancer cells, and this abnormality directly contributes to tumorigenesis and shapes many malignant phenotypes in cancer cells. Nevertheless, results from more recent experimental and clinicopathologic studies have suggested that STAT3 also can exert tumor suppressor effects under specific conditions. Importantly, some of these studies have demonstrated that STAT3 can function either as an oncoprotein or a tumor suppressor in the same cell type, depending on the specific genetic background or presence/absence of specific coexisting biochemical defects. Thus, in the context of cancer biology, STAT3 can be a friend or foe. In the first half of this review, we will highlight the “evil” features of STAT3 by summarizing its oncogenic functions and mechanisms. The differences between the canonical and non-canonical pathway will be highlighted. In the second half, we will summarize the evidence supporting that STAT3 can function as a tumor suppressor. To explain how STAT3 may mediate its tumor suppressor effects, we will discuss several possible mechanisms, one of which is linked to the role of STAT3β, one of the two STAT3 splicing isoforms. Taken together, it is clear that the roles of STAT3 in cancer are multi-faceted and far more complicated than one appreciated previously. The new knowledge has provided us with new approaches and strategies when we evaluate STAT3 as a prognostic biomarker or therapeutic target.
Collapse
|
96
|
Abstract
Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | |
Collapse
|
97
|
Liu LJ, Leung KH, Chan DSH, Wang YT, Ma DL, Leung CH. Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis 2014; 5:e1293. [PMID: 24922077 PMCID: PMC4611723 DOI: 10.1038/cddis.2014.250] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 01/05/2023]
Abstract
STAT3 regulates a variety of genes involved with cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, inflammation, and immunity. The purpose of this study was to apply molecular docking techniques to identify STAT3 inhibitors from a database of over 90000 natural product and natural product-like compounds. The virtual screening campaign furnished 14 hit compounds, from which compound 1 emerged as a top candidate. Compound 1 inhibited STAT3 DNA-binding activity in vitro and attenuated STAT3-directed transcription in cellulo with selectivity over STAT1 and with comparable potency to the well-known STAT3 inhibitor S3I-201. Furthermore, compound 1 inhibited STAT3 dimerization and decreased STAT3 phosphorylation in cells without affecting STAT1 dimerization and phosphorylation. Compound 1 also exhibited selective anti-proliferative activity against cancer cells over normal cells in vitro. Molecular docking analysis suggested that compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain. This study also validates the use of in silico techniques to identify inhibitors of protein-protein interactions, which are typically considered difficult to target with small molecules.
Collapse
Affiliation(s)
- L-J Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - K-H Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - D S-H Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Y-T Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - D-L Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - C-H Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
98
|
Sen M, Paul K, Freilino ML, Li H, Li C, Johnson DE, Wang L, Eiseman J, Grandis JR. Systemic administration of a cyclic signal transducer and activator of transcription 3 (STAT3) decoy oligonucleotide inhibits tumor growth without inducing toxicological effects. Mol Med 2014; 20:46-56. [PMID: 24395569 DOI: 10.2119/molmed.2013.00104] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022] Open
Abstract
Hyperactivation of signal transducer and activator of transcription 3 (STAT3) has been linked to tumorigenesis in most malignancies, including head and neck squamous cell carcinoma. Intravenous delivery of a chemically modified cyclic STAT3 decoy oligonucleotide with improved serum and thermal stability demonstrated antitumor efficacy in conjunction with downmodulation of STAT3 target gene expression such as cyclin D1 and Bcl-X(L) in a mouse model of head and neck squamous cell carcinoma. The purpose of the present study was to determine the toxicity and dose-dependent antitumor efficacy of the cyclic STAT3 decoy after multiple intravenous doses in Foxn1 nu mice in anticipation of clinical translation. The two doses (5 and 10 mg/kg) of cyclic STAT3 decoy demonstrated a significant decrease in tumor volume compared with the control groups (mutant cyclic STAT3 decoy or saline) in conjunction with downmodulation of STAT3 target gene expression. There was no dose-dependent effect of cyclic STAT3 decoy on tumor volume or STAT3 target gene expression. There were no significant changes in body weights between the groups during the dosing period, after the dosing interval or on the day of euthanasia. No hematology or clinical chemistry parameters suggested toxicity of the cyclic STAT3 decoy compared with saline control. No gross or histological pathological abnormalities were noted at necropsy in any of the animals. These findings suggest a lack of toxicity of intravenous administration of a cyclic STAT3 decoy oligonucleotide. In addition, comparable antitumor effects indicate a lack of dose response at the two dose levels investigated.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kathleen Paul
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hua Li
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Changyou Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel E Johnson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lin Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julie Eiseman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
99
|
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol 2014; 44:1032-40. [PMID: 24430672 DOI: 10.3892/ijo.2014.2259] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer 'hallmarks' through downstream activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Additionally, dysregulation of the interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is closely related to the development of diverse human solid tumors including colorectal cancer (CRC). On this basis, modulation of the IL-6/JAK/STAT3 signaling pathway is currently being widely explored to develop novel therapies for CRC. The present review details the mechanisms and roles of the IL-6/JAK/STAT3 pathway in CRC, describes current therapeutic strategies, and the search for potential therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yue-Ming Sun
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
100
|
STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One 2014; 9:e81819. [PMID: 24404126 PMCID: PMC3880270 DOI: 10.1371/journal.pone.0081819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/17/2013] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Signal transducer and activator of transcription 3 (STAT3) has shown to play a critical role in head and neck squamous cell carcinoma (HNSCC) and we have recently completed clinical trials of STAT3 decoy oligonucleotide in patients with recurrent or metastatic HNSCC. However, there is limited understanding of the role of STAT3 in modulating other aspects of tumorigenesis such as angiogenesis. In this study, we aimed to examine the effects of STAT3 decoy oligonucleotide on tumor angiogenesis. EXPERIMENTAL DESIGN A STAT3 decoy oligonucleotide and small interfering RNA (siRNA) were used to inhibit STAT3 in endothelial cells in vitro and in vivo. The biochemical effects of STAT3 inhibition were examined in conjunction with the consequences on proliferation, migration, apoptotic staining, and tubule formation. Additionally, we assessed the effects of STAT3 inhibition on tumor angiogenesis using murine xenograft models. RESULTS STAT3 decoy oligonucleotide decreased proliferation, induces apoptosis, decreased migration, and decreased tubule formation of endothelial cells in vitro. The STAT3 decoy oligonucleotide also inhibited tumor angiogenesis in murine tumor xenografts. Lastly, our data suggest that the antiangiogenic effects of STAT3 decoy oligonucleotide were mediatedthrough the inhibition of both STAT3 and STAT1. CONCLUSIONS The STAT3 decoy oligonucleotidewas found to be an effective antiangiogenic agent, which is likely to contribute to the overall antitumor effects of this agent in solid tumors.Taken together with the previously demonstrated antitumor activity of this agent, STAT3 decoy oligonucleotide represents a promising single agent approach to targeting both the tumor and vascular compartments in various malignancies.
Collapse
|