51
|
Sun M, Chen M, Wang M, Hansen J, Baatrup A, Dagnaes-Hansen F, Rölfing JHD, Jensen J, Lysdahl H, Li H, Johannsen M, Le DQS, Kjems J, Bünger CE. In vivo drug release behavior and osseointegration of a doxorubicin-loaded tissue-engineered scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra05351c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This pre-clinical study presented a dual function of a doxorubicin-loaded scaffold for both chemotherapeutic agent delivery and bone formation.
Collapse
Affiliation(s)
- M. Sun
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - M. Chen
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Denmark
| | - M. Wang
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - J. Hansen
- Department of Forensic Medicine
- Aarhus University
- Denmark
| | - A. Baatrup
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | | | | | - J. Jensen
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - H. Lysdahl
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - H. Li
- Spine Section
- Department of Orthopaedic Surgery
- Aarhus University Hospital
- Denmark
| | - M. Johannsen
- Department of Forensic Medicine
- Aarhus University
- Denmark
| | - D. Q. S. Le
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
| | - J. Kjems
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Denmark
| | - C. E. Bünger
- Orthopaedic Research Laboratory
- Aarhus University
- Denmark
- Spine Section
- Department of Orthopaedic Surgery
| |
Collapse
|
52
|
Alghazali KM, Nima ZA, Hamzah RN, Dhar MS, Anderson DE, Biris AS. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metab Rev 2015; 47:431-54. [PMID: 26651522 DOI: 10.3109/03602532.2015.1115871] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone loss and failure of proper bone healing continues to be a significant medical condition in need of solutions that can be implemented successfully both in human and veterinary medicine. This is particularly true when large segmental defects are present, the bone has failed to return to normal form or function, or the healing process is extremely prolonged. Given the inherent complexity of bone tissue - its unique structural, mechanical, and compositional properties, as well as its ability to support various cells - it is difficult to find ideal candidate materials that could be used as the foundation for tissue regeneration from technological platforms. Recently, important developments have been made in the implementation of complex structures built both at the macro- and the nano-level that have been shown to positively impact bone formation and to have the ability to deliver active biological molecules (drugs, growth factors, proteins, cells) for controlled tissue regeneration and the prevention of infection. These materials are diverse, ranging from polymers to ceramics and various composites. This review presents developments in this area with a focus on the role of scaffold structure and chemistry on the biologic processes that influence bone physiology and regeneration.
Collapse
Affiliation(s)
- Karrer M Alghazali
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Zeid A Nima
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Rabab N Hamzah
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Madhu S Dhar
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - David E Anderson
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - Alexandru S Biris
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| |
Collapse
|
53
|
Kim YH, Tabata Y. Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 2015; 94:28-40. [PMID: 26079284 DOI: 10.1016/j.addr.2015.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials.
Collapse
|
54
|
Chen M, Le DQ, Kjems J, Bünger C, Lysdahl H. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro. Biores Open Access 2015; 4:363-73. [PMID: 26487981 PMCID: PMC4599126 DOI: 10.1089/biores.2015.0021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/β-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies.
Collapse
Affiliation(s)
- Muwan Chen
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Dang Q.S. Le
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Cody Bünger
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Helle Lysdahl
- Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
55
|
Paris J, Román J, Manzano M, Cabañas M, Vallet-Regí M. Tuning dual-drug release from composite scaffolds for bone regeneration. Int J Pharm 2015; 486:30-7. [DOI: 10.1016/j.ijpharm.2015.03.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/19/2022]
|
56
|
Amirian J, Linh NTB, Min YK, Lee BT. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int J Biol Macromol 2015; 76:10-24. [DOI: 10.1016/j.ijbiomac.2015.02.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/25/2022]
|
57
|
Brooks BD, Sinclair KD, Grainger DW, Brooks AE. A resorbable antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model. PLoS One 2015; 10:e0118696. [PMID: 25815727 PMCID: PMC4376868 DOI: 10.1371/journal.pone.0118696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
Abstract
Nearly 1.3 million total joint replacement procedures are performed in the United States annually, with numbers projected to rise exponentially in the coming decades. Although finite infection rates for these procedures remain consistently low, device-related infections represent a significant cause of implant failure, requiring secondary or revision procedures. Revision procedures manifest several-fold higher infection recurrence rates. Importantly, many revision surgeries, infected or not, require bone void fillers to support the host bone and provide a sufficient tissue bed for new hardware placement. Antibiotic-eluting bone void fillers (ABVF), providing both osteoconductive and antimicrobial properties, represent one approach for reducing rates of orthopedic device-related infections. Using a solvent-free, molten-cast process, a polymer-controlled antibiotic-eluting calcium carbonate hydroxyapatite (HAP) ceramic composite BVF (ABVF) was fabricated, characterized, and evaluated in vivo using a bacterial challenge in a rabbit radial defect window model. ABVF loaded with tobramycin eliminated the infectious burden in rabbits challenged with a clinically relevant strain of Staphylococcus aureus (inoculum as high as 10⁷ CFU). Histological, microbiological, and radiographic methods were used to detail the effects of ABVF on microbial challenge to host bone after 8 weeks in vivo. In contrast to the HAP/BVF controls, which provided no antibiotic protection and required euthanasia 3 weeks post-operatively, tobramycin-releasing ABVF animals showed no signs of infection (clinical, microbiological, or radiographic) when euthanized at the 8-week study endpoint. ABVF sites did exhibit fibrous encapsulation around the implant at 8 weeks. Local antibiotic release from ABVF to orthopedic sites requiring bone void fillers eliminated the periprosthetic bacterial challenge in this 8-week in vivo study, confirming previous in vitro results.
Collapse
Affiliation(s)
- Benjamin D Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| | - Kristofer D Sinclair
- Elute Inc., 417 Wakara Way, Suite 3510, Salt Lake City, Utah, 84108, United States of America
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America; Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| | - Amanda E Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| |
Collapse
|
58
|
Guo B, Lei B, Li P, Ma PX. Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015; 2:47-57. [PMID: 25844177 PMCID: PMC4383297 DOI: 10.1093/rb/rbu016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/18/2014] [Accepted: 10/12/2014] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nano-composites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed.
Collapse
Affiliation(s)
- Baolin Guo
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Lei
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
59
|
Li W, Wang H, Ding Y, Scheithauer EC, Goudouri OM, Grünewald A, Detsch R, Agarwal S, Boccaccini AR. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. J Mater Chem B 2015; 3:3367-3378. [DOI: 10.1039/c5tb00044k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
45S5 Bioglass® (BG) scaffolds with high porosity (>90%) were coated with genipin cross-linked gelatin (GCG) and further incorporated with poly(p-xylyleneguanidine) hydrochloride (PPXG).
Collapse
Affiliation(s)
- Wei Li
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Hui Wang
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Yaping Ding
- Institute of Polymer Materials
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ellen C. Scheithauer
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ourania-Menti Goudouri
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Alina Grünewald
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Rainer Detsch
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Seema Agarwal
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
60
|
Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating. Biointerphases 2014; 9:041001. [DOI: 10.1116/1.4897217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
61
|
Three-dimensional biomaterial degradation — Material choice, design and extrinsic factor considerations. Biotechnol Adv 2014; 32:984-99. [DOI: 10.1016/j.biotechadv.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
62
|
Li W, Ding Y, Rai R, Roether JA, Schubert DW, Boccaccini AR. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:320-8. [DOI: 10.1016/j.msec.2014.04.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 04/21/2014] [Indexed: 12/26/2022]
|
63
|
Huang CL, Lee WL, Loo JS. Drug-eluting scaffolds for bone and cartilage regeneration. Drug Discov Today 2014; 19:714-24. [DOI: 10.1016/j.drudis.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
|
64
|
Li W, Garmendia N, Pérez de Larraya U, Ding Y, Detsch R, Grünewald A, Roether JA, Schubert DW, Boccaccini AR. 45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Adv 2014. [DOI: 10.1039/c4ra07740g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
65
|
Santos A, Sinn Aw M, Bariana M, Kumeria T, Wang Y, Losic D. Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2014; 2:6157-6182. [DOI: 10.1039/c4tb00548a] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents the different types and concepts of drug-releasing implants using new nanomaterials and nanotechnology-based devices.
Collapse
Affiliation(s)
- Abel Santos
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Moom Sinn Aw
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Manpreet Bariana
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
- School of Dentistry
- The University of Adelaide
| | - Tushar Kumeria
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Ye Wang
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| |
Collapse
|