51
|
Hao P, Duan H, Hao F, Chen L, Sun M, Fan KS, Sun YE, Williams D, Yang Z, Li X. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 2017. [DOI: 10.1016/j.biomaterials.2017.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Neuberger EJ, Swietek B, Corrubia L, Prasanna A, Santhakumar V. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility. Stem Cell Reports 2017; 9:972-984. [PMID: 28826852 PMCID: PMC5599224 DOI: 10.1016/j.stemcr.2017.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury. Increase in neurogenesis after TBI is transient and leads to long-term decline Altered neural precursor proliferation underlies post-TBI changes in neurogenesis Brief antagonism of VEGFR2 restores post-injury neurogenesis to control levels Limiting neurogenesis improves excitability and seizure susceptibility after TBI
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Bogumila Swietek
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Lucas Corrubia
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Anagha Prasanna
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
53
|
Short-Term Depression of Sprouted Mossy Fiber Synapses from Adult-Born Granule Cells. J Neurosci 2017; 37:5722-5735. [PMID: 28495975 DOI: 10.1523/jneurosci.0761-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures potently modulate hippocampal adult neurogenesis, and adult-born dentate granule cells contribute to the pathologic retrograde sprouting of mossy fiber axons, both hallmarks of temporal lobe epilepsy. The characteristics of these sprouted synapses, however, have been largely unexplored, and the specific contribution of adult-born granule cells to functional mossy fiber sprouting is unknown, primarily due to technical barriers in isolating sprouted mossy fiber synapses for analysis. Here, we used DcxCreERT2 transgenic mice to permanently pulse-label age-defined cohorts of granule cells born either before or after pilocarpine-induced status epilepticus (SE). Using optogenetics, we demonstrate that adult-born granule cells born before SE form functional recurrent monosynaptic excitatory connections with other granule cells. Surprisingly, however, although healthy mossy fiber synapses in CA3 are well characterized "detonator" synapses that potently drive postsynaptic cell firing through their profound frequency-dependent facilitation, sprouted mossy fiber synapses from adult-born cells exhibited profound frequency-dependent depression, despite possessing some of the morphological hallmarks of mossy fiber terminals. Mature granule cells also contributed to functional mossy fiber sprouting, but exhibited less synaptic depression. Interestingly, granule cells born shortly after SE did not form functional excitatory synapses, despite robust sprouting. Our results suggest that, although sprouted mossy fibers form recurrent excitatory circuits with some of the morphological characteristics of typical mossy fiber terminals, the functional characteristics of sprouted synapses would limit the contribution of adult-born granule cells to hippocampal hyperexcitability in the epileptic hippocampus.SIGNIFICANCE STATEMENT In the hippocampal dentate gyrus, seizures drive retrograde sprouting of granule cell mossy fiber axons. We directly activated sprouted mossy fiber synapses from adult-born granule cells to study their synaptic properties. We reveal that sprouted synapses from adult-born granule cells have a diminished ability to sustain recurrent excitation in the epileptic hippocampus, which raises questions about the role of sprouting and adult neurogenesis in sustaining seizure-like activity.
Collapse
|
54
|
Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway. Neural Plast 2016; 2016:8072156. [PMID: 28018679 PMCID: PMC5153466 DOI: 10.1155/2016/8072156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022] Open
Abstract
Among sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 has been shown to be the most highly expressed subtype in neural stem cells (NSCs) and plays a crucial role in the migratory property of NSCs. Recent studies suggested that S1PR1 was expressed abundantly in the hippocampus, a specific neurogenic region in rodent brain for endogenous neurogenesis throughout life. However, the potential association between S1PR1 and neurogenesis in hippocampus following traumatic brain injury (TBI) remains unknown. In this study, the changes of hippocampal S1PR1 expression after TBI and their effects on neurogenesis and neurocognitive function were investigated, focusing on particularly the extracellular signal-regulated kinase (Erk) signaling pathway which had been found to regulate multiple properties of NSCs. The results showed that a marked upregulation of S1PR1 occurred with a peak at 7 days after trauma, revealing an enhancement of proliferation and neuronal differentiation of NSCs in hippocampus due to S1PR1 activation. More importantly, it was suggested that mitogen-activated protein kinase-Erk kinase (MEK)/Erk cascade was required for S1PR1-meidated neurogenesis and neurocognitive recovery following TBI. This study lays a preliminary foundation for future research on promoting hippocampal neurogenesis and improving TBI outcome.
Collapse
|
55
|
Traumatic Brain Injury Stimulates Neural Stem Cell Proliferation via Mammalian Target of Rapamycin Signaling Pathway Activation. eNeuro 2016; 3:eN-NWR-0162-16. [PMID: 27822507 PMCID: PMC5089538 DOI: 10.1523/eneuro.0162-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells in the adult brain possess the ability to remain quiescent until needed in tissue homeostasis or repair. It was previously shown that traumatic brain injury (TBI) stimulated neural stem cell (NSC) proliferation in the adult hippocampus, indicating an innate repair mechanism, but it is unknown how TBI promotes NSC proliferation. In the present study, we observed dramatic activation of mammalian target of rapamycin complex 1 (mTORC1) in the hippocampus of mice with TBI from controlled cortical impact (CCI). The peak of mTORC1 activation in the hippocampal subgranular zone, where NSCs reside, is 24-48 h after trauma, correlating with the peak of TBI-enhanced NSC proliferation. By use of a Nestin-GFP transgenic mouse, in which GFP is ectopically expressed in the NSCs, we found that TBI activated mTORC1 in NSCs. With 5-bromo-2'-deoxyuridine labeling, we observed that TBI increased mTORC1 activation in proliferating NSCs. Furthermore, administration of rapamycin abolished TBI-promoted NSC proliferation. Taken together, these data indicate that mTORC1 activation is required for NSC proliferation postinjury, and thus might serve as a therapeutic target for interventions to augment neurogenesis for brain repair after TBI.
Collapse
|
56
|
Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. Neural Plast 2016; 2016:1347987. [PMID: 27274873 PMCID: PMC4870378 DOI: 10.1155/2016/1347987] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a widespread epidemic with severe cognitive, affective, and behavioral consequences. TBIs typically result in a relatively rapid inflammatory and neuroinflammatory response. A major component of the neuroinflammatory response is astrocytes, a type of glial cell in the brain. Astrocytes are important in maintaining the integrity of neuronal functioning, and it is possible that astrocyte hypertrophy after TBIs might contribute to pathogenesis. The hippocampus is a unique brain region, because neurogenesis persists in adults. Accumulating evidence supports the functional importance of these newborn neurons and their associated astrocytes. Alterations to either of these cell types can influence neuronal functioning. To determine if hypertrophied astrocytes might negatively influence immature neurons in the dentate gyrus, astrocyte and newborn neurons were analyzed at 30 days following a TBI in mice. The results demonstrate a loss of radial glial-like processes extending through the granule cell layer after TBI, as well as ectopic growth and migration of immature dentate neurons. The results further show newborn neurons in close association with hypertrophied astrocytes, suggesting a role for the astrocytes in aberrant neurogenesis. Future studies are needed to determine the functional significance of these alterations to the astrocyte/immature neurons after TBI.
Collapse
|
57
|
Ibrahim S, Hu W, Wang X, Gao X, He C, Chen J. Traumatic Brain Injury Causes Aberrant Migration of Adult-Born Neurons in the Hippocampus. Sci Rep 2016; 6:21793. [PMID: 26898165 PMCID: PMC4761898 DOI: 10.1038/srep21793] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in an attempt to initiate innate repair mechanisms. However, all immature neurons in the CNS are required to migrate from their birthplace to their final destination to develop into functional neurons. Here we assessed the destination of adult-born neurons following TBI. We found that a large percentage of immature neurons migrated past their normal stopping site at the inner granular cell layer (GCL), and became misplaced in the outer GCL of the hippocampal dentate gyrus. The aberrant migration of adult-born neurons in the hippocampus occurred 48 hours after TBI, and lasted for 8 weeks, resulting in a great number of newly generated neurons misplaced in the outer GCL in the hippocampus. Those misplaced neurons were able to become mature and differentiate into granular neurons, but located ectopically in the outer GCL with reduced dendritic complexity after TBI. The adult-born neurons at the misplaced position may make wrong connections with inappropriate nearby targets in the pre-existing neural network. These results suggest that although stimulation of endogenous NSCs following TBI might offer new avenues for cell-based therapy, additional intervention is required to further enhance successful neurogenesis for repairing the damaged brain.
Collapse
Affiliation(s)
- Sara Ibrahim
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Weipeng Hu
- Department of Neurosurgery, 2nd Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Chunyan He
- School of Biomedical Sciences, Huaqiao University, Quanzhou, 362000, China
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| |
Collapse
|
58
|
Patel K, Sun D. Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res 2016; 1640:104-113. [PMID: 26855258 DOI: 10.1016/j.brainres.2016.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) affects over 1.7 million people in the United States alone and poses many clinical challenges due to the variability of the injuries and complexity of biochemical mechanisms involved. Thus far, there is still no effective therapy for TBI. Failure of preventative therapeutic strategies has led studies focusing on regenerative approaches. Recent studies have shown evidence that mature brains harbors multipotent neural stem cells capable of becoming mature neurons in the neurogenic regions. Following brain insults including TBI, the injured brain has increased level of neurogenic response in the subventricular zone and dentate gyrus of the hippocampus and this endogenous response is associated with cognitive function following injury. In this review, we highlight recent development and strategies aimed at targeting this endogenous cell response to enhance post-TBI functional recovery. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Kaushal Patel
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|