51
|
Faghihi F, Kolodziejski C, Fiala A, Wörgötter F, Tetzlaff C. An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency. Front Comput Neurosci 2013; 7:183. [PMID: 24391579 PMCID: PMC3868887 DOI: 10.3389/fncom.2013.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.
Collapse
Affiliation(s)
- Faramarz Faghihi
- Department of Computational Neuroscience, Bernstein Center for Computational Neuroscience, III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Germany
| | - Christoph Kolodziejski
- Department of Computational Neuroscience, Bernstein Center for Computational Neuroscience, III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Germany
| | - Florentin Wörgötter
- Department of Computational Neuroscience, Bernstein Center for Computational Neuroscience, III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Germany
| | - Christian Tetzlaff
- Department of Computational Neuroscience, Bernstein Center for Computational Neuroscience, III. Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Germany
| |
Collapse
|
52
|
Pfuhl G, Zhao XC, Ian E, Surlykke A, Berg BG. Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain. Cell Tissue Res 2013; 355:289-302. [DOI: 10.1007/s00441-013-1749-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
|
53
|
Abstract
Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural "value signal" accessible from uniquely identifiable cells.
Collapse
|
54
|
Parnas M, Lin AC, Huetteroth W, Miesenböck G. Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 2013; 79:932-44. [PMID: 24012006 PMCID: PMC3765961 DOI: 10.1016/j.neuron.2013.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. Distances between excitatory PN (ePN) signals predict innate odor discrimination Silencing ePN subsets has distance-specific behavioral consequences Inhibitory PNs (iPNs) increase the contrast between similar odor representations iPNs act by high-pass filtering transmitter release from ePNs
Collapse
Affiliation(s)
- Moshe Parnas
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | |
Collapse
|
55
|
Farkhooi F, Froese A, Muller E, Menzel R, Nawrot MP. Cellular adaptation facilitates sparse and reliable coding in sensory pathways. PLoS Comput Biol 2013; 9:e1003251. [PMID: 24098101 PMCID: PMC3789775 DOI: 10.1371/journal.pcbi.1003251] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022] Open
Abstract
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture.
Collapse
Affiliation(s)
- Farzad Farkhooi
- Neuroinformatics & Theoretical Neuroscience, Freie Universität Berlin, and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Anja Froese
- Institute für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Randolf Menzel
- Institute für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Martin P. Nawrot
- Neuroinformatics & Theoretical Neuroscience, Freie Universität Berlin, and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
56
|
Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R. Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol 2013; 521:1073-92. [PMID: 22911613 DOI: 10.1002/cne.23219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/26/2012] [Accepted: 08/17/2012] [Indexed: 12/15/2022]
Abstract
The spatial distribution of input and output neurons in the mushroom body (MB) calyx was investigated in the silkmoth Bombyx mori. In Lepidoptera, the brain has a specialized system for processing sex pheromones. How individual pheromone components are represented in the MB has not yet been elucidated. Toward this end, we first compared the distribution of the presynaptic boutons of antennal lobe projection neurons (PNs), which transfer odor information from the antennal lobe to the MB calyx. The axons of PNs that innervate pheromonal glomeruli were confined to a relatively small area within the calyx. In contrast, the axons of PNs that innervate nonpheromonal glomeruli were more widely distributed. PN axons for the minor pheromone component covered a larger area than those for the major pheromone component and partially overlapped with those innervating nonpheromonal glomeruli, suggesting the integration of the minor pheromone component with plant odors. Overall, we found that PN axons innervating pheromonal and nonpheromonal glomeruli were organized into concentric zones. We then analyzed the dendritic fields of Kenyon cells (KCs), which receive inputs from PNs. Despite the strong regional localization of axons of different PN classes, the dendrites of KCs were less well classified. Finally, we estimated the connectivity between PNs and KCs and suggest that the dendritic field may be organized to receive different amounts of pheromonal and nonpheromonal inputs. PNs for multiple pheromone components and plant odors enter the calyx in a concentric fashion, and they are read out by the elaborate dendritic field of KCs.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Intelligent Cooperative Systems Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging. Proc Natl Acad Sci U S A 2013; 110:12084-9. [PMID: 23818618 DOI: 10.1073/pnas.1305857110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the response properties of most neurons are, to a large extent, determined by the presynaptic inputs that they receive, comprehensive functional characterization of the presynaptic inputs of a single neuron remains elusive. Toward this goal, we introduce a dual-color calcium imaging approach that simultaneously monitors the responses of a single postsynaptic neuron together with its presynaptic axon terminal inputs in vivo. As a model system, we applied the strategy to the feed-forward connections from the projection neurons (PNs) to the Kenyon cells (KCs) in the mushroom body of Drosophila and functionally mapped essentially all PN inputs for some of the KCs. We found that the output of single KCs could be well predicted by a linear summation of the PN input signals, indicating that excitatory PN inputs play the major role in generating odor-selective responses in KCs. When odors failed to activate KC output, local calcium transients restricted to individual postsynaptic sites could be observed in the KC dendrites. The response amplitudes of the local transients often correlated linearly with the presynaptic response amplitudes, allowing direct assay of the strength of single synaptic sites. Furthermore, we found a scaling relationship between the total number of PN terminals that a single KC received and the average synaptic strength of these PN-KC synapses. Our strategy provides a unique perspective on the process of information transmission and integration in a model neural circuit and may be broadly applicable for the study of the origin of neuronal response properties.
Collapse
|
58
|
Joshi B, Patel M. Encoding with synchrony: Phase-delayed inhibition allows for reliable and specific stimulus detection. J Theor Biol 2013; 328:26-32. [DOI: 10.1016/j.jtbi.2013.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
59
|
Patel MJ, Rangan AV, Cai D. Coding of odors by temporal binding within a model network of the locust antennal lobe. Front Comput Neurosci 2013; 7:50. [PMID: 23630495 PMCID: PMC3635028 DOI: 10.3389/fncom.2013.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/09/2013] [Indexed: 11/13/2022] Open
Abstract
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Collapse
Affiliation(s)
- Mainak J Patel
- Department of Mathematics, Duke University Durham, NC, USA
| | | | | |
Collapse
|
60
|
Rössler W, Brill MF. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:981-96. [PMID: 23609840 PMCID: PMC3824823 DOI: 10.1007/s00359-013-0821-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
Collapse
Affiliation(s)
- Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | |
Collapse
|
61
|
Abstract
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Collapse
|