51
|
Díez Á, Ranlund S, Pinotsis D, Calafato S, Shaikh M, Hall MH, Walshe M, Nevado Á, Friston KJ, Adams RA, Bramon E. Abnormal frontoparietal synaptic gain mediating the P300 in patients with psychotic disorder and their unaffected relatives. Hum Brain Mapp 2017; 38:3262-3276. [PMID: 28345275 DOI: 10.1002/hbm.23588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/29/2023] Open
Abstract
The "dysconnection hypothesis" of psychosis suggests that a disruption of functional integration underlies cognitive deficits and clinical symptoms. Impairments in the P300 potential are well documented in psychosis. Intrinsic (self-)connectivity in a frontoparietal cortical hierarchy during a P300 experiment was investigated. Dynamic Causal Modeling was used to estimate how evoked activity results from the dynamics of coupled neural populations and how neural coupling changes with the experimental factors. Twenty-four patients with psychotic disorder, twenty-four unaffected relatives, and twenty-five controls underwent EEG recordings during an auditory oddball paradigm. Sixteen frontoparietal network models (including primary auditory, superior parietal, and superior frontal sources) were analyzed and an optimal model of neural coupling, explaining diagnosis and genetic risk effects, as well as their interactions with task condition were identified. The winning model included changes in connectivity at all three hierarchical levels. Patients showed decreased self-inhibition-that is, increased cortical excitability-in left superior frontal gyrus across task conditions, compared with unaffected participants. Relatives had similar increases in excitability in left superior frontal and right superior parietal sources, and a reversal of the normal synaptic gain changes in response to targets relative to standard tones. It was confirmed that both subjects with psychotic disorder and their relatives show a context-independent loss of synaptic gain control at the highest hierarchy levels. The relatives also showed abnormal gain modulation responses to task-relevant stimuli. These may be caused by NMDA-receptor and/or GABAergic pathologies that change the excitability of superficial pyramidal cells and may be a potential biological marker for psychosis. Hum Brain Mapp 38:3262-3276, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Álvaro Díez
- Division of Psychiatry, University College London, London, United Kingdom.,Department of Basic Psychology II - Cognitive processes, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience - Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - Siri Ranlund
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Dimitris Pinotsis
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stella Calafato
- Division of Psychiatry, University College London, London, United Kingdom
| | - Madiha Shaikh
- North East London NHS Foundation Trust, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Muriel Walshe
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Ángel Nevado
- Department of Basic Psychology II - Cognitive processes, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience - Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
52
|
Muraskin J, Sherwin J, Lieberman G, Garcia JO, Verstynen T, Vettel JM, Sajda P. Fusing multiple neuroimaging modalities to assess group differences in perception-action coupling. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2017; 105:83-100. [PMID: 28713174 PMCID: PMC5509353 DOI: 10.1109/jproc.2016.2574702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the last few decades, non-invasive neuroimaging has revealed macro-scale brain dynamics that underlie perception, cognition and action. Advances in non-invasive neuroimaging target two capabilities; 1) increased spatial and temporal resolution of measured neural activity, and 2) innovative methodologies to extract brain-behavior relationships from evolving neuroimaging technology. We target the second. Our novel methodology integrated three neuroimaging methodologies and elucidated expertise-dependent differences in functional (fused EEG-fMRI) and structural (dMRI) brain networks for a perception-action coupling task. A set of baseball players and controls performed a Go/No-Go task designed to mimic the situation of hitting a baseball. In the functional analysis, our novel fusion methodology identifies 50ms windows with predictive EEG neural correlates of expertise and fuses these temporal windows with fMRI activity in a whole-brain 2mm voxel analysis, revealing time-localized correlations of expertise at a spatial scale of millimeters. The spatiotemporal cascade of brain activity reflecting expertise differences begins as early as 200ms after the pitch starts and lasting up to 700ms afterwards. Network differences are spatially localized to include motor and visual processing areas, providing evidence for differences in perception-action coupling between the groups. Furthermore, an analysis of structural connectivity revealed that the players have significantly more connections between cerebellar and left frontal/motor regions, and many of the functional activation differences between the groups are located within structurally defined network modules that differentiate expertise. In short, our novel method illustrates how multimodal neuroimaging can provide specific macro-scale insights into the functional and structural correlates of expertise development.
Collapse
Affiliation(s)
- Jordan Muraskin
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| | - Jason Sherwin
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| | - Gregory Lieberman
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA. He is also with University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA
| | - Javier O Garcia
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA
| | - Timothy Verstynen
- Carnegie Mellon University, Department of Psychology, Pittsburgh, PA, USA
| | - Jean M Vettel
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA. He is also with University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, USA and also with University of California, Santa Barbara, Department of Psychological & Brain Sciences, Santa Barbara, CA, USA
| | - Paul Sajda
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| |
Collapse
|
53
|
Muraskin J, Dodhia S, Lieberman G, Garcia JO, Verstynen T, Vettel JM, Sherwin J, Sajda P. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players. Hum Brain Mapp 2016; 37:4454-4471. [PMID: 27448098 PMCID: PMC5113676 DOI: 10.1002/hbm.23321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/11/2022] Open
Abstract
Post‐task resting state dynamics can be viewed as a task‐driven state where behavioral performance is improved through endogenous, non‐explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post‐task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division‐1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No‐Go task before a resting state scan, and we compared post‐task resting state connectivity using a seed‐based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post‐task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA–L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD‐alpha oscillation correlations between groups suggests variability in modulatory attention in the post‐task state, and (3) group differences between BOLD‐beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post‐task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454–4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jordan Muraskin
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Sonam Dodhia
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Gregory Lieberman
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, Aberdeen, Maryland.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Javier O Garcia
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Timothy Verstynen
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jean M Vettel
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, Aberdeen, Maryland.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, California
| | - Jason Sherwin
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
54
|
Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM. Simultaneous EEG-fMRI for working memory of the human brain. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:363-78. [PMID: 27043850 DOI: 10.1007/s13246-016-0438-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
Collapse
Affiliation(s)
- Rana Fayyaz Ahmad
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Aamir Saeed Malik
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia. .,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research (CISIR), Tronoh, Malaysia.,Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Faruque Reza
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.,Centre for Neuroscience Services and Research, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
55
|
Kiat J, Straley E, Cheadle JE. Escalating risk and the moderating effect of resistance to peer influence on the P200 and feedback-related negativity. Soc Cogn Affect Neurosci 2016; 11:377-86. [PMID: 26416785 PMCID: PMC4769624 DOI: 10.1093/scan/nsv121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/07/2015] [Accepted: 09/21/2015] [Indexed: 11/14/2022] Open
Abstract
Young people frequently socialize together in contexts that encourage risky decision making, pointing to a need for research into how susceptibility to peer influence is related to individual differences in the neural processing of decisions during sequentially escalating risk. We applied a novel analytic approach to analyze EEG activity from college-going students while they completed the Balloon Analogue Risk Task (BART), a well-established risk-taking propensity assessment. By modeling outcome-processing-related changes in the P200 and feedback-related negativity (FRN) sequentially within each BART trial as a function of pump order as an index of increasing risk, our results suggest that analyzing the BART in a progressive fashion may provide valuable new insights into the temporal neurophysiological dynamics of risk taking. Our results showed that a P200, localized to the left caudate nucleus, and an FRN, localized to the left dACC, were positively correlated with the level of risk taking and reward. Furthermore, consistent with our hypotheses, the rate of change in the FRN was higher among college students with greater self-reported resistance to peer influence.
Collapse
Affiliation(s)
- John Kiat
- Department of Psychology, The University of Nebraska-Lincoln, 34 Burnett Hall, Lincoln, NE 68588-, USA and
| | - Elizabeth Straley
- Department of Psychology, The University of Nebraska-Lincoln, 34 Burnett Hall, Lincoln, NE 68588-, USA and
| | - Jacob E Cheadle
- Department of Sociology, The University of Nebraska-Lincoln, 737 Oldfather Hall, Lincoln, NE 68588-0324, USA
| |
Collapse
|
56
|
Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice. J Neurosci 2015; 35:13064-75. [PMID: 26400937 DOI: 10.1523/jneurosci.1601-15.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For day-to-day decisions, multiple factors influence our choice between alternatives. Two dimensions of decision making that substantially affect choice are the objective perceptual properties of the stimulus (e.g., salience) and its subjective value. Here we measure EEGs in human subjects to relate their feedback-evoked EEG responses to estimates of prediction error given a neurally derived expected value for each trial. Unlike in traditional reinforcement learning paradigms, in our experiment the reward itself is not probabilistic; rather, it is a fixed value, which, when combined with the variable stimulus salience, yields uncertainty in the choice. We find that feedback-evoked event-related potentials (ERPs), specifically those classically termed feedback-related negativity, are modulated by both the reward level and stimulus salience. Using single-trial analysis of the EEG, we show stimulus-locked EEG components reflecting perceived stimulus salience can be combined with the level of reward to create an estimate of expected reward. This expected reward is used to form a prediction error that correlates with the trial-by-trial variability of the feedback ERPs for negative, but not positive, feedback. This suggests that the valence of prediction error is more important than the valence of the actual feedback, since only positive rewards were delivered in the experiment (no penalty or loss). Finally, we show that these subjectively defined prediction errors are informative of the riskiness of the subject's choice on the subsequent trial. In summary, our work shows that neural correlates of stimulus salience interact with value information to yield neural representations of subjective expected reward. Significance statement: How we make perceptual decisions depends on sensory evidence and the value of our options. These two factors often interact to yield subjective decisions; i.e., individuals integrate sensory evidence and value to form their own estimates of expected reward. Here, we use electroencephelography to identify trial-by-trial neural activity of perceived stimulus salience, showing that this activity can be combined with the value of choice options to form a representation of expected reward. Our results provide insight into the neural processing governing the interaction between salience and value and the formation of subjective expected reward and prediction error. This work is potentially important for identifying neural markers of abnormal sensory/value processing, as is seen in some cases of psychiatric illnesses.
Collapse
|
57
|
Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex 2015; 74:96-106. [PMID: 26656284 DOI: 10.1016/j.cortex.2015.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/14/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways.
Collapse
|
58
|
Chorlian DB, Rangaswamy M, Manz N, Kamarajan C, Pandey AK, Edenberg H, Kuperman S, Porjesz B. Gender modulates the development of theta event related oscillations in adolescents and young adults. Behav Brain Res 2015; 292:342-52. [PMID: 26102560 PMCID: PMC4705839 DOI: 10.1016/j.bbr.2015.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/16/2022]
Abstract
The developmental trajectories of theta band (4-7 Hz) event-related oscillations (EROs), a key neurophysiological constituent of the P3 response, were assessed in 2170 adolescents and young adults ages 12 to 25. The theta EROs occurring in the P3 response, important indicators of neurocognitive function, were elicited during the evaluation of task-relevant target stimuli in visual and auditory oddball tasks. These tasks call upon attentional and working memory resources. Large differences in developmental rates between males and females were found; scalp location and task modality (visual or auditory) differences within males and females were small compared to gender differences. Trajectories of interregional and intermodal correlations between ERO power values exhibited increases with age in both genders, but showed a divergence in development between auditory and visual systems during ages 16 to 21. These results are consistent with previous electrophysiological and imaging studies and provide additional temporal detail about the development of neurophysiological indices of cognitive activity. Since measures of the P3 response has been found to be a useful endophenotypes for the study of a number of clinical and behavioral disorders, studies of its development in adolescents and young adults may illuminate neurophysiological factors contributing to the onset of these conditions.
Collapse
Affiliation(s)
- David B Chorlian
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | | | - Niklas Manz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Howard Edenberg
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
59
|
Two spatiotemporally distinct value systems shape reward-based learning in the human brain. Nat Commun 2015; 6:8107. [PMID: 26348160 PMCID: PMC4569710 DOI: 10.1038/ncomms9107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022] Open
Abstract
Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.
Collapse
|
60
|
Knowing when not to swing: EEG evidence that enhanced perception-action coupling underlies baseball batter expertise. Neuroimage 2015; 123:1-10. [PMID: 26299795 DOI: 10.1016/j.neuroimage.2015.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022] Open
Abstract
Given a decision that requires less than half a second for evaluating the characteristics of the incoming pitch and generating a motor response, hitting a baseball potentially requires unique perception-action coupling to achieve high performance. We designed a rapid perceptual decision-making experiment modeled as a Go/No-Go task yet tailored to reflect a real scenario confronted by a baseball hitter. For groups of experts (Division I baseball players) and novices (non-players), we recorded electroencephalography (EEG) while they performed the task. We analyzed evoked EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus alpha power with respect to the expert vs. novice groups. We found strong evidence for differences in inhibitory processes between the two groups, specifically differential activity in supplementary motor areas (SMA), indicative of enhanced inhibitory control in the expert (baseball player) group. We also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the expert group, suggesting an enhanced perception-action coupling in baseball players that differentiates them from matched controls. In sum, our results show that EEG correlates of decision formation can be used to identify neural markers of high-performance athletes.
Collapse
|
61
|
Recognition of faces and names: multimodal physiological correlates of memory and executive function. Brain Imaging Behav 2015; 10:408-23. [PMID: 26116280 DOI: 10.1007/s11682-015-9420-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We sought to characterize electrophysiological, eye-tracking and behavioral correlates of face-name recognition memory in healthy younger adults using high-density electroencephalography (EEG), infrared eye-tracking (ET), and neuropsychological measures. Twenty-one participants first studied 40 face-name (FN) pairs; 20 were presented four times (4R) and 20 were shown once (1R). Recognition memory was assessed by asking participants to make old/new judgments for 80 FN pairs, of which half were previously studied items and half were novel FN pairs (N). Simultaneous EEG and ET recording were collected during recognition trials. Comparisons of event-related potentials (ERPs) for correctly identified FN pairs were compared across the three item types revealing classic ERP old/new effects including 1) relative positivity (1R > N) bi-frontally from 300 to 500 ms, reflecting enhanced familiarity, 2) relative positivity (4R > 1R and 4R > N) in parietal areas from 500 to 800 ms, reflecting enhanced recollection, and 3) late frontal effects (1R > N) from 1000 to 1800 ms in right frontal areas, reflecting post-retrieval monitoring. ET analysis also revealed significant differences in eye movements across conditions. Exploration of cross-modality relationships suggested associations between memory and executive function measures and the three ERP effects. Executive function measures were associated with several indicators of saccadic eye movements and fixations, which were also associated with all three ERP effects. This novel characterization of face-name recognition memory performance using simultaneous EEG and ET reproduced classic ERP and ET effects, supports the construct validity of the multimodal FN paradigm, and holds promise as an integrative tool to probe brain networks supporting memory and executive functioning.
Collapse
|
62
|
Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli. Neuroimage 2015; 113:153-63. [PMID: 25797833 DOI: 10.1016/j.neuroimage.2015.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022] Open
Abstract
EEG alpha-band activity is generally thought to represent an inhibitory state related to decreased attention and play a role in suppression of task-irrelevant stimulus processing, but a competing hypothesis suggests an active role in processing task-relevant information - one in which phase dynamics are involved. Here we used simultaneous EEG-fMRI and a whole-brain analysis to investigate the effects of prestimulus alpha activity on the event-related BOLD response during an auditory oddball task. We separately investigated the effects of the posterior alpha rhythm's power and phase on activity related to task-relevant stimulus processing and also investigated higher-level decision-related processing. We found stronger decision-related BOLD activity in areas late in the processing stream when subjects were in the high alpha power state prior to stimulus onset, but did not detect any effect in primary sensory regions. Our phase analysis revealed correlates in the bilateral thalamus, providing support for a thalamo-cortical loop in attentional modulations and suggesting that the cortical alpha rhythm acts as a cyclic modulator of task-related responses very early in the processing stream. Our results help to reconcile the competing inhibition and active-processing hypotheses for ongoing alpha oscillations and begin to tease apart the distinct roles and mechanisms underlying their power and phase.
Collapse
Affiliation(s)
- Jennifer M Walz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robin I Goldman
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael Carapezza
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jordan Muraskin
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Truman R Brown
- Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
63
|
Deep brain stimulation for neurodegenerative disease. PROGRESS IN BRAIN RESEARCH 2015; 222:125-46. [DOI: 10.1016/bs.pbr.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Mullinger KJ, Chowdhury MEH, Bowtell R. Investigating the effect of modifying the EEG cap lead configuration on the gradient artifact in simultaneous EEG-fMRI. Front Neurosci 2014; 8:226. [PMID: 25120427 PMCID: PMC4114285 DOI: 10.3389/fnins.2014.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/09/2014] [Indexed: 11/22/2022] Open
Abstract
EEG data recorded during simultaneous fMRI are contaminated by large voltages generated by time-varying magnetic field gradients. Correction of the resulting gradient artifact (GA) generally involves low-pass filtering to attenuate the high-frequency voltage fluctuations of the GA, followed by subtraction of a GA template produced by averaging over repeats of the artifact waveforms. This average artifact subtraction (AAS) process relies on the EEG amplifier having a large enough dynamic range to characterize the artifact voltages and on invariance of the artifact waveform over repeated image acquisitions. Saturation of the amplifiers and changes in subject position can leave unwanted residual GA after AAS. Previous modeling work suggested that modifying the lead layout and the exit position of the cable bundle on the EEG cap could reduce the GA amplitude. Here, we used simulations and experiments to evaluate the effect of modifying the lead paths on the magnitude of the GA and on the residual artifact after AAS. The modeling work showed that for wire paths following great circles, the smallest overall GA occurs when the leads converge at electrode Cz. The performance of this new cap design was compared with a standard cap in experiments on a spherical agar phantom and human subjects. Using gradient pulses applied separately along the three Cartesian axes, we found that the GA due to the foot-head gradient was most significantly reduced relative to a standard cap for the phantom, whereas the anterior-posterior GA was most attenuated for human subjects. In addition, there was an overall 37% reduction in the RMS GA amplitude produced by a standard EPI sequence when comparing the two caps on the phantom. In contrast, the subjects showed an 11% increase in the average RMS of the GA. This work shows that the optimal design reduces the GA on a spherical phantom however; these gains are not translated to human subjects, probably due to the differences in geometry.
Collapse
Affiliation(s)
- Karen J Mullinger
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK ; Birmingham University Imaging Centre, School of Psychology, University of Birmingham Birmingham, UK
| | - Muhammad E H Chowdhury
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK
| |
Collapse
|
65
|
Hong L, Walz JM, Sajda P. Your eyes give you away: prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics. PLoS One 2014; 9:e91321. [PMID: 24618591 PMCID: PMC3950210 DOI: 10.1371/journal.pone.0091321] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/11/2014] [Indexed: 01/20/2023] Open
Abstract
Pupillary measures have been linked to arousal and attention as well as activity in the brainstem's locus coeruleus norepinephrine (LC-NE) system. Similarly, there is evidence that evoked EEG responses, such as the P3, might have LC-NE activity as their basis. Since it is not feasible to record electrophysiological data directly from the LC in humans due to its location in the brainstem, an open question has been whether pupillary measures and EEG variability can be linked in a meaningful way to shed light on the nature of the LC-NE role in attention and arousal. We used an auditory oddball task with a data-driven approach to learn task-relevant projections of the EEG, for windows of data spanning the entire trial. We investigated linear and quadratic relationships between the evoked EEG along these projections and both prestimulus (baseline) and poststimulus (evoked dilation) pupil diameter measurements. We found that baseline pupil diameter correlates with early (175–200 ms) and late (350–400 ms) EEG component variability, suggesting a linear relationship between baseline (tonic) LC-NE activity and evoked EEG. We found no relationships between evoked EEG and evoked pupil dilation, which is often associated with evoked (phasic) LC activity. After regressing out reaction time (RT), the correlation between EEG variability and baseline pupil diameter remained, suggesting that such correlation is not explainable by RT variability. We also investigated the relationship between these pupil measures and prestimulus EEG alpha activity, which has been reported as a marker of attentional state, and found a negative linear relationship with evoked pupil dilation. In summary, our results demonstrate significant relationships between prestimulus and poststimulus neural and pupillary measures, and they provide further evidence for tight coupling between attentional state and evoked neural activity and for the role of cortical and subcortical networks underlying the process of target detection.
Collapse
Affiliation(s)
- Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Jennifer M. Walz
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|