Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease.
Neurobiol Dis 2007;
29:161-8. [PMID:
17933546 DOI:
10.1016/j.nbd.2007.08.011]
[Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/27/2007] [Accepted: 08/16/2007] [Indexed: 11/25/2022] Open
Abstract
Altered glutamatergic neurotransmission is central to the expression of Parkinson's disease (PD) symptoms and may underlie l-DOPA-induced dyskinesias. Drugs acting on glutamate metabotropic receptors (mGluR) of group I can modulate subthalamic nucleus (STN) overactivity, which plays a pivotal role in these phenomena, and may counteract dyskinesias. To address these issues, we investigated the effects of a 3-week treatment with mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), or of a subthalamic lesion, on abnormal involuntary movements (AIMs) and associated striatal expression of transcription factor FosB/Delta FosB caused by chronic l-DOPA administration, in rats with a nigrostriatal lesion. MPEP virtually abolished AIMs and reduced, dramatically, striatal expression of FosB/Delta FosB. Reduced FosB/Delta FosB expression, coupled with nonsignificant reduction of AIMs, was also observed in STN-lesioned rats. Our data confirm the role of glutamatergic neurotransmission in the pathogenesis of dyskinesias and the potential of mGluR5 antagonists in the treatment of l-DOPA-induced dyskinesias.
Collapse