51
|
Stilling RM, Rönicke R, Benito E, Urbanke H, Capece V, Burkhardt S, Bahari-Javan S, Barth J, Sananbenesi F, Schütz AL, Dyczkowski J, Martinez-Hernandez A, Kerimoglu C, Dent SYR, Bonn S, Reymann KG, Fischer A. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J 2014; 33:1912-27. [PMID: 25024434 DOI: 10.15252/embj.201487870] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)--a HAT that has not been studied for its role in memory function so far--shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.
Collapse
Affiliation(s)
- Roman M Stilling
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Raik Rönicke
- Research group for Pathophysiology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Eva Benito
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Hendrik Urbanke
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Vincenzo Capece
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sanaz Bahari-Javan
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jonas Barth
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Anna L Schütz
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jerzy Dyczkowski
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ana Martinez-Hernandez
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Sharon Y R Dent
- MD Anderson Cancer Center, University of Texas, Smithville, TX, USA
| | - Stefan Bonn
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Klaus G Reymann
- Research group for Pathophysiology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
52
|
Federman N, Zalcman G, de la Fuente V, Fustiñana MS, Romano A. Epigenetic mechanisms and memory strength: a comparative study. ACTA ACUST UNITED AC 2014; 108:278-85. [PMID: 24978317 DOI: 10.1016/j.jphysparis.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.
Collapse
Affiliation(s)
- Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina.
| | - Gisela Zalcman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Maria Sol Fustiñana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| |
Collapse
|
53
|
Vargas LS, Lara MVS, Gonçalves R, Mandredini V, Ponce-Soto LA, Marangoni S, Dal Belo CA, Mello-Carpes PB. The intrahippocampal infusion of crotamine from Crotalus durissus terrificus venom enhances memory persistence in rats. Toxicon 2014; 85:52-8. [PMID: 24813333 DOI: 10.1016/j.toxicon.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
Abstract
Previous research has shown that crotamine, a toxin isolated from the venom of Crotalus durissus terrificus, induces the release of acetylcholine and dopamine in the central nervous system of rats. Particularly, these neurotransmitters are important modulators of memory processes. Therefore, in this study we investigated the effects of crotamine infusion on persistence of memory in rats. We verified that the intrahippocampal infusion of crotamine (1 μg/μl; 1 μl/side) improved the persistence of object recognition and aversive memory. By other side, the intrahippocampal infusion of the toxin did not alter locomotor and exploratory activities, anxiety or pain threshold. These results demonstrate a future prospect of using crotamine as potential pharmacological tool to treat diseases involving memory impairment, although it is still necessary more researches to better elucidate the crotamine effects on hippocampus and memory.
Collapse
Affiliation(s)
- Liane S Vargas
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Marcus V S Lara
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Rithiele Gonçalves
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Vanusa Mandredini
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Luis Alberto Ponce-Soto
- LAQUIP, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- LAQUIP, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Cháriston A Dal Belo
- CIPBIOTEC, Federal University of Pampa (UNIPAMPA), Campus São Gabriel, 97300-000 São Gabriel, RS, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, P.O. Box 118, 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
54
|
PAR2-mediated epigenetic upregulation of α-synuclein contributes to the pathogenesis of Parkinson׳s disease. Brain Res 2014; 1565:82-9. [DOI: 10.1016/j.brainres.2014.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
|
55
|
NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:612798. [PMID: 24678511 PMCID: PMC3942292 DOI: 10.1155/2014/612798] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/28/2013] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.
Collapse
|
56
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|
57
|
Tao H, Shi KH, Yang JJ, Huang C, Zhan HY, Li J. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 2013; 26:521-7. [PMID: 24321371 DOI: 10.1016/j.cellsig.2013.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Histone deacetylases (HDACs) are enzymes that balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. In recent years, the role of HDACs in cardiac fibrosis initiation and progression, as well as the therapeutic effects of HDAC inhibitors, has been well studied. Moreover, numerous studies indicated that HDAC activity is associated with the development and progression of cardiac fibrosis. In this review, the innovative aspects of HDACs are discussed, with respect to biogenesis, their role in cardiac fibrosis. Furthermore, the potential applications of HDAC inhibitors in the treatment of cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Ying Zhan
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
58
|
Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol Neurobiol 2013; 49:757-70. [PMID: 24122352 DOI: 10.1007/s12035-013-8555-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
Although traditionally associated with immune function, the transcription factor nuclear factor kappa B (NF-κB) has garnered much attention in recent years as an important regulator of memory. Specifically, research has found that NF-κB, localized in both neurons and glia, is activated during the induction of long-term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory. Further, experimental manipulation of NF-κB activation or its blockade results in altered memory and spatial navigation abilities. Genetic knockout of specific NF-κB subunits in mice results in memory alterations. Collectively, such data suggest that NF-κB may be a requirement for memory, although the direction of the response (i.e., memory enhancement or deficit) is inconsistent. A limited number of gene targets of NF-κB have been recently identified in neurons, including neurotrophic factors, calcium-regulating proteins, other transcription factors, and molecules associated with neuronal outgrowth and remodeling. In turn, several key molecules are activators of NF-κB, including protein kinase C and [Ca(++)]i. Thus, NF-κB signaling is complex and under the regulation of numerous proteins involved in activity-dependent synaptic plasticity. The purpose of this review is to highlight the literature detailing a role for NF-κB in synaptic plasticity, memory, and spatial navigation. Secondly, this review will synthesize the research evaluating gene targets of NF-κB in synaptic plasticity and memory. Although there is ample evidence to suggest a critical role for NF-κB in memory, our understanding of its gene targets in neurons is limited and only beginning to be appreciated.
Collapse
|
59
|
Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 2013; 41:8072-84. [PMID: 23821663 PMCID: PMC3783173 DOI: 10.1093/nar/gkt590] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Campus de Sant Joan. Apt. 18. Sant Joan d'Alacant, 03550 Alicante, Spain
| | | | | | | | | |
Collapse
|