51
|
Shelton GD, Minor KM, Li K, Naviaux JC, Monk J, Wang L, Guzik E, Guo LT, Porcelli V, Gorgoglione R, Lasorsa FM, Leegwater PJ, Persico AM, Mickelson JR, Palmieri L, Naviaux RK. A Mutation in the Mitochondrial Aspartate/Glutamate Carrier Leads to a More Oxidizing Intramitochondrial Environment and an Inflammatory Myopathy in Dutch Shepherd Dogs. J Neuromuscul Dis 2019; 6:485-501. [PMID: 31594244 PMCID: PMC6918910 DOI: 10.3233/jnd-190421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory myopathies are characterized by infiltration of inflammatory cells into muscle. Typically, immune-mediated disorders such as polymyositis, dermatomyositis and inclusion body myositis are diagnosed. OBJECTIVE A small family of dogs with early onset muscle weakness and inflammatory muscle biopsies were investigated for an underlying genetic cause. METHODS Following the histopathological diagnosis of inflammatory myopathy, mutational analysis including whole genome sequencing, functional transport studies of the mutated and wild-type proteins, and metabolomic analysis were performed. RESULTS Whole genome resequencing identified a pathological variant in the SLC25A12 gene, resulting in a leucine to proline substitution at amino acid 349 in the mitochondrial aspartate-glutamate transporter known as the neuron and muscle specific aspartate glutamate carrier 1 (AGC1). Functionally reconstituting recombinant wild-type and mutant AGC1 into liposomes demonstrated a dramatic decrease in AGC1 transport activity and inability to transfer reducing equivalents from the cytosol into mitochondria. Targeted, broad-spectrum metabolomic analysis from affected and control muscles demonstrated a proinflammatory milieu and strong support for oxidative stress. CONCLUSIONS This study provides the first description of a metabolic mechanism in which ablated mitochondrial glutamate transport markedly reduced the import of reducing equivalents into mitochondria and produced a highly oxidizing and proinflammatory muscle environment and an inflammatory myopathy.
Collapse
Affiliation(s)
- G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katie M. Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jane C. Naviaux
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jon Monk
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Elizabeth Guzik
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Ling T. Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco M. Lasorsa
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Peter J. Leegwater
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, The Netherlands
| | - Antonio M. Persico
- Interdepartmental Program “Autism 0–90”, “G. Martino” Hospital, University of Messina, Messina, Italy
| | - James R. Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Robert K. Naviaux
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|