51
|
Zoratti M, De Marchi U, Gulbins E, Szabò I. Novel channels of the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:351-63. [PMID: 19111672 DOI: 10.1016/j.bbabio.2008.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022]
Abstract
Along with a large number of carriers, exchangers and "pumps", the inner mitochondrial membrane contains ion-conducting channels which endow it with controlled permeability to small ions. Some have been shown to be the mitochondrial counterpart of channels present also in other cellular membranes. The manuscript summarizes the current state of knowledge on the major inner mitochondrial membrane channels, properties, identity and proposed functions. Considerable attention is currently being devoted to two K(+)-selective channels, mtK(ATP) and mtBK(Ca). Their activation in "preconditioning" is considered by many to underlie the protection of myocytes and other cells against subsequent ischemic damage. We have recently shown that in apoptotic lymphocytes inner membrane mtK(V)1.3 interacts with the pro-apoptotic protein Bax after the latter has inserted into the outer mitochondrial membrane. Whether the just-discovered mtIK(Ca) has similar cellular role(s) remains to be seen. The Ca(2+) "uniporter" has been characterized electrophysiologically, but still awaits a molecular identity. Chloride-selective channels are represented by the 107 pS channel, the first mitochondrial channel to be observed by patch-clamp, and by a approximately 400 pS pore we have recently been able to fully characterize in the inner membrane of mitochondria isolated from a colon tumour cell line. This we propose to represent a component of the Permeability Transition Pore. The available data exclude the previous tentative identification with porin, and indicate that it coincides instead with the still molecularly unidentified "maxi" chloride channel.
Collapse
|
52
|
De Marchi U, Szabò I, Cereghetti GM, Hoxha P, Craigen WJ, Zoratti M. A maxi-chloride channel in the inner membrane of mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1438-48. [DOI: 10.1016/j.bbabio.2008.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/01/2008] [Accepted: 08/12/2008] [Indexed: 01/09/2023]
|
53
|
Shu YG, Lai PY. Systematic Kinetics Study of FoF1-ATPase: Analytic Results and Comparison with Experiments. J Phys Chem B 2008; 112:13453-9. [DOI: 10.1021/jp8052696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao-Gen Shu
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, R. O. C., and Institute of Theoretical Physics, The Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China
| | - Pik-Yin Lai
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, R. O. C., and Institute of Theoretical Physics, The Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China
| |
Collapse
|
54
|
Abstract
Nonelectrolyte polymers of poly(ethylene glycol) (PEG) were used to estimate the diameter of the ion channel formed by the Bacillus anthracis protective antigen 63 (PA(63)). Based on the ability of different molecular weight PEGs to partition into the pore and reduce channel conductance, the pore appears to be narrower than the one formed by Staphylococcus aureus alpha-hemolysin. Numerical integration of the PEG sample mass spectra and the channel conductance data were used to refine the estimate of the pore's PEG molecular mass cutoff (approximately 1400 g/mol). The results suggest that the limiting diameter of the PA(63) pore is <2 nm, which is consistent with an all-atom model of the PA(63) channel and previous experiments using large ions.
Collapse
|
55
|
Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y. Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 2008; 18:558-65. [DOI: 10.1038/cr.2008.49] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
56
|
Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biophys J 2007; 94:1646-55. [PMID: 18024498 DOI: 10.1529/biophysj.107.117820] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial distribution of maxi-anion channels in rat cardiomyocytes were studied by applying the recently developed patch clamp technique under scanning ion conductance microscopy, called the "smart-patch" technique. In primary-cultured neonatal cells, the channel was found to be unevenly distributed over the cell surface with significantly lower channel activity in cellular extensions compared with the other parts. Local ATP release, detected using a PC12 cell-based biosensor technique, also exhibited a similar pattern. The maxi-anion channel activity could not be detected in freshly isolated adult cardiomyocytes by the conventional patch-clamp with 2-MOmega pipettes. However, when fine-tipped 15-20 MOmega pipettes were targeted to only Z-line areas, we observed, for the first time, the maxi-anion events. Smart-patching different regions of the cell surface, we found that the channel activity was maximal at the openings of T-tubules and along Z-lines, but was significantly decreased in the scallop crest area. Thus, it is concluded that maxi-anion channels are concentrated at the openings of T-tubules and along Z-lines in adult cardiomyocytes. This study showed that the smart-patch technique provides a powerful method to detect a unitary event of channels that are localized at some specific site in the narrow region.
Collapse
|
57
|
Liu HT, Sabirov RZ, Okada Y. Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 2007; 4:147-54. [PMID: 18368522 PMCID: PMC2377326 DOI: 10.1007/s11302-007-9077-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 08/22/2007] [Indexed: 11/30/2022] Open
Abstract
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 μM. The OGD-induced ATP release was inhibited by Gd3+ and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl− channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X7 receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd3+ and arachidonic acid. The channel was found to be permeable to ATP4− with a permeability ratio of PATP/PCl = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Myodaiji-cho, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|
58
|
Harris AL. Connexin channel permeability to cytoplasmic molecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:120-43. [PMID: 17470375 PMCID: PMC1995164 DOI: 10.1016/j.pbiomolbio.2007.03.011] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made approximately 30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly, expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex--30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: what specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, Newark, NJ 07103, USA.
| |
Collapse
|
59
|
Andreeva ZI, Nesterenko VF, Fomkina MG, Ternovsky VI, Suzina NE, Bakulina AY, Solonin AS, Sineva EV. The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:253-63. [PMID: 17173854 DOI: 10.1016/j.bbamem.2006.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/29/2022]
Abstract
Hemolysin II (HlyII), one of several cytolytic proteins encoded by the opportunistic human pathogen Bacillus cereus, is a member of the family of oligomeric beta-barrel pore-forming toxins. This work has studied the pore-forming properties of HlyII using a number of biochemical and biophysical approaches. According to electron microscopy, HlyII protein interacts with liposomes to form ordered heptamer-like macromolecular assemblies with an inner pore diameter of 1.5-2 nm and an outer diameter of 6-8 nm. This is consistent with inner pore diameter obtained from osmotic protection assay. According to the 3D model obtained, seven HlyII monomers might form a pore, the outer size of which has been estimated to be slightly larger than by the other method, with an inner diameter changing from 1 to 4 nm along the channel length. The hemolysis rate has been found to be temperature-dependent, with an explicit lag at lower temperatures. Temperature jump experiments have indicated the pore structures formed at 37 degrees C and 4 degrees C to be different. The channels formed by HlyII are anion-selective in lipid bilayers and show a rising conductance as the salt concentration increases. The results presented show for the first time that at high salt concentration HlyII pores demonstrate voltage-induced gating observed at low negative potentials. Taken together we have found that the membrane-binding properties of hemolysin II as well as the properties of its pores strongly depend on environmental conditions. The study of the properties together with structural modeling allows a better understanding of channel functioning.
Collapse
Affiliation(s)
- Zhanna I Andreeva
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 2006; 572:677-89. [PMID: 16527858 PMCID: PMC1780004 DOI: 10.1113/jphysiol.2005.103820] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are chloride channels which are permeable to a variety of small organic anions, including the excitatory amino acids (EAAs) glutamate and aspartate. Broad spectrum anion channel blockers strongly reduce EAA release in cerebral ischaemia and other pathological states associated with prominent astrocytic swelling. However, it is uncertain whether VRAC serves as a major pathway for EAA release from swollen cells. In the present study, we measured swelling-activated release of EAAs as D-[3H]aspartate efflux, and VRAC-mediated Cl- currents by whole-cell patch clamp in cultured rat astrocytes. We compared the pharmacological profiles of the swelling-activated EAA release pathway and Cl- currents. The expression of candidate Cl- channels was confirmed by RT-PCR. The maxi Cl- channel (p-VDAC) blocker Gd3+, the ClC-2 inhibitor Cd2+, and the MDR-1 blocker verapamil did not affect EAA release or VRAC currents. An antagonist of calcium-sensitive Cl- channels (CaCC), niflumic acid, had little effect on EAA release and only partially inhibited swelling-activated Cl- currents. The phorbol ester PDBu, which blocks ClC-3-mediated Cl- currents, had no effect on VRAC currents and up-regulated EAA release. In contrast, DCPIB, which selectively inhibits VRACs, potently suppressed both EAA release and VRAC currents. Two other relatively selective VRAC inhibitors, tamoxifen and phloretin, also blocked the VRAC currents and strongly reduced EAA release. Taken together, our data suggest that (i) astrocytic volume-dependent EAA release is largely mediated by the VRAC, and (ii) the ClC-2, ClC-3, ClC-4, ClC-5, VDAC, CaCC, MDR-1 and CFTR gene products do not contribute to EAA permeability.
Collapse
|
61
|
Bahima L, Aleu J, Elias M, Martín-Satué M, Muhaisen A, Blasi J, Marsal J, Solsona C. Endogenous hemichannels play a role in the release of ATP from Xenopus oocytes. J Cell Physiol 2006; 206:95-102. [PMID: 15965959 DOI: 10.1002/jcp.20440] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP is an electrically charged molecule that functions both in the supply of energy necessary for cellular activity and as an intercellular signaling molecule. Although controlled ATP secretion occurs via exocytosis of granules and vesicles, in some cells, and under certain conditions, other mechanisms control ATP release. Gap junctions, intercellular channels formed by connexins that link the cytoplasm of two adjacent cells, control the passage of ions and molecules up to 1 kDa. The channel is formed by two moieties called hemichannels, or connexons, and it has been suggested that these may represent an alternative pathway for ATP release. We have investigated the release of ATP through hemichannels from Xenopus oocytes that are formed by Connexin 38 (Cx38), an endogenous, specific type of connexin. These hemichannels generate an inward current that is reversibly activated by calcium-free solution and inhibited by octanol and flufenamic acid. This calcium-sensitive current depends on Cx38 expression: it is decreased in oocytes injected with an antisense oligonucleotide against Cx38 mRNA (ASCx38) and is increased in oocytes overexpressing Cx38. Moreover, the activation of these endogenous connexons also allows transfer of Lucifer Yellow. We have found that the release of ATP is coincident with the opening of hemichannels: it is calcium-sensitive, is inhibited by octanol and flufenamic acid, is inhibited in ASCx38 injected oocytes, and is increased by overexpression of Cx38. Taken together, our results suggest that ATP is released through activated hemichannels in Xenopus oocytes.
Collapse
Affiliation(s)
- Laia Bahima
- Laboratory of Molecular and Cellular Neurobiology, Department of Pathology and Experimental Therapeutics, IDIBELL-Medical School, University of Barcelona, Bellvitge Campus, Feixa Llarga s/n, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Thompson RJ, Akana HCSR, Finnigan C, Howell KE, Caldwell JH. Anion channels transport ATP into the Golgi lumen. Am J Physiol Cell Physiol 2006; 290:C499-514. [PMID: 16403948 DOI: 10.1152/ajpcell.00585.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion channels provide a pathway for Cl(-) influx into the lumen of the Golgi cisternae. This influx permits luminal acidification by the organelle's H(+)-ATPase. Three different experimental approaches, electrophysiological, biochemical, and proteomic, demonstrated that two Golgi anion channels, GOLAC-1 and GOLAC-2, also mediate ATP anion transport into the Golgi lumen. First, GOLAC-1 and -2 were incorporated into planar lipid bilayers, and single-channel recordings were obtained. Low ionic activities of K(2)ATP added to the cis-chamber directly inhibited the Cl(-) subconductance levels of both channels, with K(m) values ranging from 16 to 115 microM. Substitution of either K(2)ATP or MgATP for Cl(-) on the cis, trans, or both sides indicated that ATP is conducted by the channels with a relative permeability sequence of Cl(-) > ATP(4-) > MgATP(2-). Single-channel currents were observed at physiological concentrations of Cl(-) and ATP, providing evidence for their importance in vivo. Second, transport of [alpha-(32)P]ATP into sealed Golgi vesicles that maintain in situ orientation was consistent with movement through the GOLACs because it exhibited little temperature dependence and was saturated with an apparent K(m) = 25 microM. Finally, after transport of [gamma-(32)P]ATP, a protease-protection assay demonstrated that proteins are phosphorylated within the Golgi lumen, and after SDS-PAGE, the proteins in the phosphorylated bands were identified by mass spectrometry. GOLAC conductances, [alpha-(32)P]ATP transport, and protein phosphorylation have identical pharmacological profiles. We conclude that the GOLACs play dual roles in the Golgi complex, providing pathways for Cl(-) and ATP influx into the Golgi lumen.
Collapse
Affiliation(s)
- Roger J Thompson
- Dept. of Cell and Developmental Biology, Univ. of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
63
|
Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 2006; 54:343-57. [PMID: 16883573 DOI: 10.1002/glia.20400] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes release glutamate upon hyperexcitation in the normal brain, and in response to pathologic insults such as ischemia and trauma. In our experiments, both hypotonic and ischemic stimuli caused the release of glutamate from cultured mouse astrocytes, which occurred with little or no contribution of gap junction hemichannels, vesicle-mediated exocytosis, or reversed operation of the Na-dependent glutamate transporter. Cell swelling and chemical ischemia activated, in cell-attached membrane patches, anionic channels with large unitary conductance (approximately 400 pS) and inactivation kinetics at potentials more positive than +20 mV or more negative than -20 mV. These properties are different from those of volume-sensitive outwardly rectifying (VSOR) Cl- channels, which were also expressed in these cells and exhibited intermediate unitary conductance (approximately 80 pS) and inactivation kinetics at large positive potentials of more than +40 mV. Both maxi-anion channels and VSOR Cl- channels were permeable to glutamate with permeability ratios of glutamate to chloride of 0.21 +/- 0.07 and 0.15 +/- 0.01, respectively. However, the release of glutamate was significantly more sensitive to Gd3+, a blocker of maxi-anion channels, than to phloretin, a blocker of VSOR Cl- channels. We conclude that these two channels jointly represent a major conductive pathway for the release of glutamate from swollen and ischemia-challenged astrocytes, with the contribution of maxi-anion channels being predominant.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
64
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
65
|
Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem 2005; 281:1897-904. [PMID: 16291750 DOI: 10.1074/jbc.m509482200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
66
|
Ternovsky VI, Okada Y, Sabirov RZ. Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. FEBS Lett 2004; 576:433-6. [PMID: 15498575 DOI: 10.1016/j.febslet.2004.09.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 09/15/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Partitioning of ethylene glycol and its polymeric forms into the pore of the volume-sensitive outwardly rectifying (VSOR) anion channel was studied to assess the pore size. Polyethylene glycol (PEG) PEG 200-300 (Rh = 0.27-0.53 nm) effectively suppressed the single-channel currents, whereas PEG 400-4000 (Rh = 0.62-1.91 nm) had little or no effect. Since all the molecules tested effectively decreased electric conductivity of the bulk solution, the observed differential effects between PEG 200-300 and PEG 400-4000 on the VSOR single-channel current are due to their limited partitioning into the channel lumen. The cut-off radius of the VSOR channel pore was assessed to be 0.63 nm.
Collapse
Affiliation(s)
- Vadim I Ternovsky
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | |
Collapse
|