51
|
Recio Despaigne AA, Da Silva JG, da Costa PR, Dos Santos RG, Beraldo H. ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioma cells. Molecules 2014; 19:17202-20. [PMID: 25350363 PMCID: PMC6270821 DOI: 10.3390/molecules191117202] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 01/04/2023] Open
Abstract
2-Acetylpyridine acetylhydrazone (H2AcMe), 2-benzoylpyridine acetylhydrazone (H2BzMe) and complexes [Cu(H2AcMe)Cl2] (1) and [Cu(H2BzMe)Cl2] (2) were assayed for their cytotoxicity against wild type p53 U87 and mutant p53 T98 glioma cells, and against MRC-5 fibroblast cells. Compounds 1 and 2 proved to be more active than the corresponding hydrazones against U87, but not against T98 cells. Compound 1 induced higher levels of ROS than H2AcMe in both glioma cell lines. H2AcMe and 1 induced lower levels of ROS in MRC5 than in U87 cells. Compound 2 induced lower levels of ROS in MRC5 than in T98 cells. The cytotoxic effect of 1 in U87 cells could be related to its ability to provoke the release of ROS, suggesting that the cytotoxicity of 1 might be somehow p53 dependent.
Collapse
Affiliation(s)
- Angel A Recio Despaigne
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Jeferson G Da Silva
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Pryscila R da Costa
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, Brazil.
| | - Raquel G Dos Santos
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, Brazil.
| | - Heloisa Beraldo
- Departamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| |
Collapse
|
52
|
Milenković M, Pevec A, Turel I, Vujčić M, Milenković M, Jovanović K, Gligorijević N, Radulović S, Swart M, Gruden-Pavlović M, Adaila K, Cobeljić B, Anđelković K. Synthesis, characterization, DFT calculation and biological activity of square-planar Ni(II) complexes with tridentate PNO ligands and monodentate pseudohalides. Part II. Eur J Med Chem 2014; 87:284-97. [PMID: 25262049 DOI: 10.1016/j.ejmech.2014.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/24/2022]
Abstract
Three square-planar complexes of Ni(II) with condensation derivative of 2-(diphenylphosphino)benzaldehyde and 4-phenylsemicarbazide and monodentate pseudohalides have been synthesized and characterized on the basis of the results of X-ray, NMR and IR spectroscopy and elemental analysis. Investigated complexes exhibited moderate antibacterial and cytotoxic activity. The most pronounced cytotoxic activity (in the range of cisplatin) to HeLa cell line was observed for ligand and all the complexes. Azido complex and ligand induced concentration dependent cell cycle arrest in the S phase, as well as decrease of percentage of cells in G1 phase, without significant increase of apoptotic fraction of cells. The interaction of the azido complex and ligand with CT-DNA results in changes in UV-Vis spectra typical for non-covalent bonding. The observed intrinsic binding constant of azido complex-CT-DNA and ligand-CT-DNA were 3.22 × 10(5) M(-1) and 2.79 × 10(5) M(-1). The results of DNA cleavage experiments showed that azido complex nicked supercoiled plasmid DNA.
Collapse
Affiliation(s)
- Milica Milenković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 815, 11000 Belgrade, Serbia
| | - Marina Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Serbia
| | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Laboratory for Experimental Pharmacology, Pasterova 14, Belgrade, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Laboratory for Experimental Pharmacology, Pasterova 14, Belgrade, Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Laboratory for Experimental Pharmacology, Pasterova 14, Belgrade, Serbia
| | - Marcel Swart
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain; Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | - Maja Gruden-Pavlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Kawther Adaila
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Božidar Cobeljić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Katarina Anđelković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
53
|
Fresch B, Remacle F. Atomistic account of structural and dynamical changes induced by small binders in the double helix of a short DNA. Phys Chem Chem Phys 2014; 16:14070-82. [PMID: 24902052 DOI: 10.1039/c4cp01561d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acids are flexible molecules and their dynamical properties play a key role in molecular recognition events. Small binders interacting with DNA fragments induce both structural and dynamical changes in the double helix. We study the dynamics of a DNA dodecamer and of its complexes with Hoechst 33258, which is a minor groove binder, and with the ethidium cation, which is an intercalator, by molecular dynamics simulation. The thermodynamics of DNA-drug interaction is evaluated in connection with the structure and the dynamics of the resulting complexes. We identify and characterize the relevant changes in the configurational distribution of the DNA helix and relate them to the corresponding entropic contributions to the binding free energy. The binder Hoechst locks the breathing motion of the minor groove inducing a reduction of the configurational entropy of the helix, which amounts to 20 kcal mol(-1). In contrast, intercalations with the ethidium cation enhance the flexibility of the double helix. We show that the balance between the energy required to deform the helix for the intercalation and the gain in configurational entropy is the origin of cooperativity in the binding of a second ethidium and of anti-cooperativity in the binding of a third one. The results of our study provide an understanding of the relation between structure, dynamics and energetics in the interaction between DNA fragments and small binders, highlighting the role of dynamical changes and consequent variation of the configurational entropy of the DNA double helix for both types of binders.
Collapse
Affiliation(s)
- Barbara Fresch
- Department of Chemistry, B6c, University of Liege, B4000 Liege, Belgium.
| | | |
Collapse
|
54
|
Interaction of 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs with single stranded ribonucleotides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:64-74. [PMID: 24792476 DOI: 10.1016/j.jphotobiol.2014.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022]
Abstract
Studies on the molecular aspects of alkaloid-RNA complexation are of prime importance for the development of rational RNA targeted drug design strategies. Towards this goal, the binding aspects of three novel 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to four single stranded ribonucleotides, poly(G), poly(I), poly(C) and poly(U), were studied for the first time employing multifaceted biophysical tools. Absorbance and fluorescence studies revealed that these analogs bound non-cooperatively to poly(G) and poly(I) with binding affinities remarkably higher than berberine. The binding of these analogs to poly(U) and poly(C) was weaker in comparison to poly(G) and poly(I) but were one order higher in comparison to berberine. Quantum efficiency values revealed that energy transfer occurred from the RNA bases to the analogs upon complexation. The binding was dominated by large positive entropic contributions and small but favorable enthalpic contributions. Salt dependent studies established that the binding was dominated by hydrophobic forces that contributed around 90% of the total standard molar Gibbs energy. The chain length of the substitution at the 9-position was found to be critical in modulating the binding affinities. These results provide new insights into the binding efficacy of these novel berberine analogs to single stranded RNA sequences.
Collapse
|
55
|
Moldovan NI, Anghelina M, Varadharaj S, Butt OI, Wang T, Yang F, Moldovan L, Zweier JL. Reoxygenation-derived toxic reactive oxygen/nitrogen species modulate the contribution of bone marrow progenitor cells to remodeling after myocardial infarction. J Am Heart Assoc 2014; 3:e000471. [PMID: 24419735 PMCID: PMC3959689 DOI: 10.1161/jaha.113.000471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells (BMPCs) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling. Methods and Results For assessment of cellular origin, local oxygenation, redox status, and fate of cells in the infarcted region, myocardial infarction in mice with or without LacZ+ bone marrow transplantation was induced by coronary ligation. Sham‐operated mice served as controls. After 1 week, LacZ+ BMPC‐derived cells were found inhomogeneously distributed into the infarct zone, with a lower density at its core. Electron paramagnetic resonance (EPR) oximetry showed that pO2 in the infarct recovered starting on day 2 post–myocardial infarction, concomitant with wall thinning and erythrocytes percolating through muscle microruptures. Paralleling this reoxygenation, increased generation of reactive oxygen/nitrogen species was detected at the infarct core. This process delineated a zone of diminished BMPC engraftment, and at 1 week infiltrating cells displayed immunoreactive 3‐nitrotyrosine and apoptosis. In vivo treatment with a superoxide dismutase mimetic significantly reduced reactive oxygen species formation and amplified BMPC accumulation. This treatment also salvaged wall thickness by 43% and left ventricular ejection fraction by 27%, with significantly increased animal survival. Conclusions BMPC engraftment in the infarct inversely mirrored the distribution of reactive oxygen/nitrogen species. Antioxidant treatment resulted in increased numbers of engrafted BMPCs, provided functional protection to the heart, and decreased the incidence of myocardial rupture and death.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Morrison EA, Henzler-Wildman KA. Transported substrate determines exchange rate in the multidrug resistance transporter EmrE. J Biol Chem 2014; 289:6825-6836. [PMID: 24448799 DOI: 10.1074/jbc.m113.535328] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
57
|
Basu A, Kumar GS. Minor groove binding of the food colorant carmoisine to DNA: spectroscopic and calorimetric characterization studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:317-326. [PMID: 24328331 DOI: 10.1021/jf404960n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction of the food additive carmoisine with herring testes DNA was studied by multifaceted biophysical techniques. Carmoisine exhibited hypochromic effects in absorbance, whereas in fluorescence the intensity enhanced upon complexation with DNA. Energy transfer from the DNA base pairs to carmoisine molecules occurred upon complexation. A groove binding model of interaction was envisaged for carmoisine-DNA complexation from 4',6-diamidino-2-phenylindole (DAPI) and Hoechst displacement studies. The binding of carmoisine stabilized the DNA structure against thermal denaturation. The binding induced moderate conformational perturbations in the B-form structure of DNA. The binding affinity (10(4) M(-1)) values, calculated from absorbance and fluorescence data, and calorimetry titrations were in close agreement with each other. The binding was characterized to be exothermic and favored by small negative enthalpic and large positive entropic contributions. Salt-dependent calorimetric studies revealed that the binding reaction was dominated by nonpolyelectrolytic forces. The negative heat capacity value suggested the role of hydrophobic effect in the interaction.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology , Kolkata 700 032, India
| | | |
Collapse
|
58
|
Pradhan AB, Haque L, Bhuiya S, Das S. Induction of self-structure in polyriboadenylic acid by the benzophenanthridine plant alkaloid chelerythrine: a spectroscopic approach. RSC Adv 2014. [DOI: 10.1039/c4ra07075e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Induction of self-structure in polyriboadenylic acid by chelerythrine.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| |
Collapse
|
59
|
Studies on the interactions of bioactive quinone avarone and its methylamino derivatives with calf thymus DNA. Int J Biol Macromol 2013; 62:405-10. [DOI: 10.1016/j.ijbiomac.2013.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
|
60
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
61
|
Wang G, Li X, Gou Y, Chen Y, Yan C, Lu Y. DNA binding properties and biological evaluation of dihydropyrimidinones derivatives as potential antitumor agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:214-219. [PMID: 23778166 DOI: 10.1016/j.saa.2013.05.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 10(4)M(-1). According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases.
Collapse
Affiliation(s)
- Gongke Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | | | | | | | | | | |
Collapse
|
62
|
Basu A, Kumar GS. Biophysical studies on curcumin-deoxyribonucleic acid interaction: spectroscopic and calorimetric approach. Int J Biol Macromol 2013; 62:257-64. [PMID: 24041996 DOI: 10.1016/j.ijbiomac.2013.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
The interaction of the dietary pigment curcumin with herring testes deoxyribonucleic acid was studied by biophysical and microcalorimetric techniques. Curcumin bound to DNA exhibiting hypochromic effect in absorbance and enhanced intensity of its fluorescence. The binding a affinity value evaluated from spectroscopy data was of the order 10(4) M(-1). The quantum efficiency value testified the occurrence of energy transfer from the DNA base pairs to the curcumin molecules. Displacement studies of DNA bound DAPI, Hoechst and ethidium bromide suggested binding of curcumin to be in the minor groove of the DNA. Moderate conformational perturbations of the B-form structure of DNA occurred on binding. The binding affinity weakened as the DNA GC content enhanced. The binding was characterized by negative enthalpy and positive entropy changes; the binding affinity from calorimetry was in good agreement with that evaluated from the spectral data. The binding was dominated by hydrophobic and other non-polyelectrolytic forces; the polyelectrolytic forces contributing only a quarter to the total Gibbs energy at 50 mM [Na(+)].
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | |
Collapse
|
63
|
Ihmels H, Mattay J, May F, Thomas L. Photoswitchable DNA-binding properties of a photochromic spirooxazine derivative. Org Biomol Chem 2013; 11:5184-8. [PMID: 23824474 DOI: 10.1039/c3ob40930a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-methylphenanthrolinium-annelated spirooxazine derivative 2(SO) whose DNA-intercalating properties are reversibly changed by a photochromic reaction was prepared. Upon irradiation at 350 nm the spirooxazine is transformed to the corresponding photomerocyanine 2(PM) that binds to DNA. After irradiation with visible light the spirooxazine 2(SO), which exhibits no significant DNA-binding properties, is regained. The association of 2(PM) with DNA was examined by CD and absorption spectroscopy, fluorescent intercalator displacement and viscometric titration.
Collapse
Affiliation(s)
- Heiko Ihmels
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany.
| | | | | | | |
Collapse
|
64
|
Da Silva JG, Recio Despaigne AA, Louro SR, Bandeira CC, Souza-Fagundes EM, Beraldo H. Cytotoxic activity, albumin and DNA binding of new copper(II) complexes with chalcone-derived thiosemicarbazones. Eur J Med Chem 2013; 65:415-26. [DOI: 10.1016/j.ejmech.2013.04.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
65
|
Basu A, Jaisankar P, Kumar GS. Photophysical and calorimetric studies on the binding of 9-O-substituted analogs of the plant alkaloid berberine to double stranded poly(A). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:105-14. [PMID: 23792948 DOI: 10.1016/j.jphotobiol.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023]
Abstract
This interaction of four novel 9-O-substituted analogs of the plant alkaloid berberine with double stranded poly(A) was studied using a variety of biophysical techniques. Remarkably higher binding of two 9-O-ω-amino alkyl ether analogs compared to the two 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs was observed. Quantum efficiency values suggested that energy was transferred from the adenine base pairs to the analogs on binding. Ferrocyanide quenching and viscosity studies revealed the binding mode to be intercalative for these analogs. Circular dichroism studies showed that these analogs induced significant conformational changes in the secondary structure of ds poly(A). Energetics of the binding suggested that 9-O-N-aryl/arylalkyl amino carbonyl methyl berberines bound very weakly to ds poly(A). The binding of 9-O-ω-amino alkyl ether analogs was entropy dominated with a smaller but favorable enthalpic contribution to the Gibbs energy. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy-entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
66
|
Wang G, Yan C, Lu Y. Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives. Colloids Surf B Biointerfaces 2013; 106:28-36. [DOI: 10.1016/j.colsurfb.2013.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|
67
|
Tsiaggali M, Andreadou E, Hatzidimitriou A, Pantazaki A, Aslanidis P. Copper(I) halide complexes of N-methylbenzothiazole-2-thione: Synthesis, structure, luminescence, antibacterial activity and interaction with DNA. J Inorg Biochem 2013; 121:121-8. [DOI: 10.1016/j.jinorgbio.2013.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/31/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
68
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
69
|
Drug-DNA intercalation: from discovery to the molecular mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:1-62. [PMID: 23954098 DOI: 10.1016/b978-0-12-411636-8.00001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.
Collapse
|
70
|
Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 2012; 91:276-89. [DOI: 10.1016/j.mimet.2012.08.007] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
|
71
|
|
72
|
Yao H, Ashiba K. Efficient Excitation-Energy Transfer in Ion-Based Organic Nanoparticles with Versatile Tunability of the Fluorescence Colours. Chemphyschem 2012; 13:2703-10. [DOI: 10.1002/cphc.201200191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2012] [Indexed: 11/06/2022]
|
73
|
Nishiyama T, Kagami Y, Yamauchi T, Tsubokawa N. Preparation of stimulus-sensitive gel particles with a DNA-dye complex and their pH sensitivity. Polym J 2012. [DOI: 10.1038/pj.2011.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Chitrapriya N, Jang YJ, Kim SK, Lee H. Non-intercalative binding mode of bridged binuclear chiral Ru(II) complexes to native duplex DNA. J Inorg Biochem 2011; 105:1569-75. [DOI: 10.1016/j.jinorgbio.2011.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
75
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
76
|
Maiti S, Dutta S, Das PK. Unmodified "GNP-oligonucleotide" nanobiohybrids: a simple route for emission enhancement of DNA intercalators. Chemistry 2011; 17:7538-48. [PMID: 21567505 DOI: 10.1002/chem.201100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 11/07/2022]
Abstract
We present herein a simple method for enhancing the emission of DNA intercalators in homogeneous nanobiohybrids of unlabeled oligonucleotides and unmodified gold nanoparticles (GNPs). Pristine single-stranded DNA (ss-DNA) has been wrapped around unmodified GNPs to induce metal-enhanced fluorescence (MEF) of DNA intercalators, such as ethidium bromide and propidium iodide. The thickness of the ss-DNA layer on the gold nanosurface determines the extent of MEF, since this depends on the position of the intercalator in relation to the metal surface. Presumably, at a suitable thickness of this DNA layer, more of the intercalator is localized at the optimum distance from the nanoparticle to give rise to MEF. Importantly, no external spacer or coating agent was needed to induce the MEF effect of the GNPs. The concentration ratios of Au to DNA in the nanohybrids, as well as the capping agents applied to the GNPs, play key roles in enhancing the emission of the intercalators. The dimensions of both components of the nanobiohybrids, that is, the size of the GNPs and the length of the oligonucleotide, have considerable influences on the emission enhancement of the intercalators. Emission intensity increased with increasing size of the GNPs and length of the oligonucleotide only when the DNA efficiently wrapped the nanoparticles. An almost 100 % increment in the quantum yield of ethidium bromide was achieved with the GNP-DNA nanobiohybrid compared with that with DNA alone (in the absence of GNP), and the fluorescence emission was enhanced by 50 % even at an oligonucleotide concentration of 2 nM. The plasmonic effect of the GNPs in the emission enhancement was also established by the use of similar nanobioconjugates of ss-DNA with nonmetallic carbon nanoparticles and TiO(2) nanoparticles, with which no increase in the fluorescence emission of ethidium bromide was observed.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | | | |
Collapse
|
77
|
Prunkl C, Pichlmaier M, Winter R, Kharlanov V, Rettig W, Wagenknecht HA. Optical, Redox, and DNA-Binding Properties of Phenanthridinium Chromophores: Elucidating the Role of the Phenyl Substituent for Fluorescence Enhancement of Ethidium in the Presence of DNA. Chemistry 2010; 16:3392-402. [DOI: 10.1002/chem.200902823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
78
|
Zulkefeli M, Sogon T, Takeda K, Kimura E, Aoki S. Design and synthesis of a stable supramolecular trigonal prism formed by the self-assembly of a linear tetrakis(Zn2+-cyclen) complex and trianionic trithiocyanuric acid in aqueous solution and its complexation with DNA (cyclen = 1,4,7,10-tetraazacyclododecane). Inorg Chem 2010; 48:9567-78. [PMID: 19743814 DOI: 10.1021/ic901407d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new supramolecular complex, {(Zn(4)L(4))(3)-(TCA(3-))(4)}(12+), was designed and synthesized by the 3:4 self-assembly of a linear tetrakis(Zn(2+)-cyclen) complex (Zn(4)L(4))(8+) and trianionic trithiocyanurate (TCA(3-)) in aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane). The {(Zn(4)L(4))(3)-(TCA(3-))(4)}(12+) complex, which should have a trigonal prism configuration, was found to be very stable in aqueous solution at neutral pH and 25 degrees C, as evidenced by (1)H NMR titration, potentiometric pH and UV titrations, and MS measurements. The complex does not dissociate into the starting building blocks in the presence of Zn(2+)-binding anions such as phosphates and double-stranded DNA. The results of the competitive binding assays with ethidium bromide and calf-thymus DNA, thermal melting experiments, gel mobility shift assays, and dynamic light-scattering data strongly indicated that the trigonal prism functions as a polycationic template to induce the aggregation of double-stranded DNA.
Collapse
Affiliation(s)
- Mohd Zulkefeli
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | | | | | | | | |
Collapse
|
79
|
Anuradha, Alam MS, Chaudhury NK. Osmolyte Changes the Binding Affinity and Mode of Interaction of Minor Groove Binder Hoechst 33258 with Calf Thymus DNA. Chem Pharm Bull (Tokyo) 2010; 58:1447-54. [DOI: 10.1248/cpb.58.1447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Anuradha
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences
| | | | - Nabo Kumar Chaudhury
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences
| |
Collapse
|
80
|
Akbay N, Seferoğlu Z, Gök E. Fluorescence interaction and determination of calf thymus DNA with two ethidium derivatives. J Fluoresc 2009; 19:1045-51. [PMID: 19557506 DOI: 10.1007/s10895-009-0504-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
In this paper, we reported the syntheses and investigation of the modes of binding to DNA of the two new ethidium derivatives containing benzoyl and phenylacetyl groups of both amines at 3-and 8- positions. The interactions between calf thymus DNA (ct-DNA) and the two derivatives, 3,8-dibenzoylamino-5-ethyl-6-phenylphenantridinium cloride (E2) and 3,8-diphenylacetylamino-5-ethyl-6-phenylphenantridinium chloride (E3), were investigated by fluorescence quenching spectra and UV-vis absorption spectra. The Stern-Volmer quenching constants, binding constants, binding sites and the corresponding thermodynamic parameters DeltaH, DeltaS and DeltaG were calculated at different temperatures. The results indicated the formation of E2 and E3-DNA complexes and van der Waals interactions as the predominant intermolecular forces in stabilizing for each complex. In addition, increasing nucleophilicity of the functional groups at 3- and 8- positions exhibited the respectable increment the DNA binding affinities of derivatives. The results of absorption, ionic strength and iodide ion quenching suggested that the interaction mode of E2 and E3 with ct-DNA was intercalative binding. The limit of detection (LOD) of ct-DNA were 7.49 x 10(-8) (n = 4) and 4.18 x 10(-8) mol/l (n = 7) in presence of E2 and E3, respectively.
Collapse
Affiliation(s)
- Nuriye Akbay
- Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | | | | |
Collapse
|
81
|
Islam MM, Pandya P, Kumar S, Kumar GS. RNA targeting through binding of small molecules: Studies on t-RNA binding by the cytotoxic protoberberine alkaloidcoralyne. ACTA ACUST UNITED AC 2009; 5:244-54. [DOI: 10.1039/b816480k] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
82
|
Bhadra K, Maiti M, Kumar GS. DNA-Binding Cytotoxic Alkaloids: Comparative Study of the Energetics of Binding of Berberine, Palmatine, and Coralyne. DNA Cell Biol 2008; 27:675-85. [DOI: 10.1089/dna.2008.0779] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
83
|
Dalton SR, Glazier S, Leung B, Win S, Megatulski C, Burgmayer SJN. DNA binding by Ru(II)–bis(bipyridine)–pteridinyl complexes. J Biol Inorg Chem 2008; 13:1133-48. [DOI: 10.1007/s00775-008-0399-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
84
|
Synthesis, structure and interactions with DNA of novel tetranuclear, [Mn4(II/II/II/IV)] mixed valence complexes. J Inorg Biochem 2008; 102:618-28. [DOI: 10.1016/j.jinorgbio.2007.10.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/23/2022]
|
85
|
Giri P, Kumar GS. Self-structure induction in single stranded poly(A) by small molecules: Studies on DNA intercalators, partial intercalators and groove binding molecules. Arch Biochem Biophys 2008; 474:183-92. [PMID: 18387354 DOI: 10.1016/j.abb.2008.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/13/2008] [Accepted: 03/15/2008] [Indexed: 11/17/2022]
Abstract
Self-structure induction in single stranded poly(A) has been one typical example of the various ways that could be used to modulate nucleic acid structural aspects through binding of small molecules. For the first time, the interaction between a series of small molecules and poly(A) has been investigated to understand the nature of the structural features in DNA binding small molecules that could be responsible for the formation of self-structure in single stranded poly(A) molecules. Classical intercalators like ethidium, coralyne, quinacrine and proflavine, partial intercalators like berberine and palmatine and classical minor groove binders like hoechst 33258 and DAPI have been chosen for this study. The binding of each of these molecules to poly(A) has been characterized by absorption spectral titration, job plot and isothermal titration calorimetry. Self-structure formation was monitored from circular dichroic melting, optical melting and differential scanning calorimetry. The results revealed that while all the intercalators studied induced self-structure formation, partial intercalators did not induce the same in poly(A). Of the two classical DNA minor groove binding molecules investigated, hoechst was effective in inducing self-structure while DAPI was ineffective. Self-structure induction in poly(A) was observed to be directly linked to the cooperative binding of the molecules to poly(A) in that all the molecules that bound cooperatively induced self-structure in poly(A). Structural and thermodynamic aspects of the interaction leading to self-structure formation are described.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | | |
Collapse
|
86
|
Giri P, Kumar GS. Spectroscopic and calorimetric studies on the binding of the phototoxic and cytotoxic plant alkaloid sanguinarine with double helical poly(A). J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
87
|
Laurindo FRM, Fernandes DC, Santos CXC. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol 2008; 441:237-60. [PMID: 18554538 DOI: 10.1016/s0076-6879(08)01213-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assessment of low-level superoxide in nonphagocytic cells is crucial for assessing redox-dependent signaling pathways and the role of enzymes such as the NADPH oxidase complex. However, most superoxide probes present inherent limitations. Particularly, assessment of dihydroethidium (DHE) fluorescence is limited regarding a lack of possible quantification and simultaneous detection of its two main products: 2-hydroxyethidium, more specific for superoxide, and ethidium, which reflects H2O2-dependent pathways involving metal proteins. HPLC separation and analysis of those two main products have been described. This chapter reports procedures used for the validation of superoxide measurements in vascular system. Superoxide assessment was performed for cultured cells and tissue fragments incubated with DHE, followed by acetonitrile extraction and HPLC run, with simultaneous fluorescence detection of 2-hydroxyethidium and ethidium and ultraviolet detection of remaining DHE. It also describes procedures for DHE-based NADPH oxidase activity assays using HPLC or fluorometry. Such methods can enhance accuracy and allow better quantitation of vascular superoxide measurements.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | |
Collapse
|
88
|
Giri P, Kumar GS. Binding of protoberberine alkaloid coralyne with double stranded poly(A): a biophysical study. MOLECULAR BIOSYSTEMS 2008; 4:341-8. [DOI: 10.1039/b716356h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Iermak IL, Kruglova OB, Palchykovska LH, Alexeeva IV. Spectrophotometrical study of mechanisms of cytidine analogues and ethidium bromide binding with DNA. ACTA ACUST UNITED AC 2007. [DOI: 10.7124/bc.000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ie. L. Iermak
- Kharkiv National University
- A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - O. B. Kruglova
- A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - L. H. Palchykovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - I. V. Alexeeva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
90
|
Basili S, Bergen A, Dall'Acqua F, Faccio A, Granzhan A, Ihmels H, Moro S, Viola G. Relationship between the Structure and the DNA Binding Properties of Diazoniapolycyclic Duplex- and Triplex-DNA Binders: Efficiency, Selectivity, and Binding Mode. Biochemistry 2007; 46:12721-36. [DOI: 10.1021/bi701518v] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Serena Basili
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Anna Bergen
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Francesco Dall'Acqua
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Anita Faccio
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Anton Granzhan
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Heiko Ihmels
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stefano Moro
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Giampietro Viola
- Organic Chemistry II, University of Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
91
|
Kubar T, Hanus M, Ryjácek F, Hobza P. Binding of cationic and neutral phenanthridine intercalators to a DNA oligomer is controlled by dispersion energy: quantum chemical calculations and molecular mechanics simulations. Chemistry 2007; 12:280-90. [PMID: 16294358 DOI: 10.1002/chem.200500725] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Correlated ab initio as well as semiempirical quantum chemical calculations and molecular dynamics simulations were used to study the intercalation of cationic ethidium, cationic 5-ethyl-6-phenylphenanthridinium and uncharged 3,8-diamino-6-phenylphenanthridine to DNA. The stabilization energy of the cationic intercalators is considerably larger than that of the uncharged one. The dominant energy contribution with all intercalators is represented by dispersion energy. In the case of the cationic intercalators, the electrostatic and charge-transfer terms are also important. The DeltaG of ethidium intercalation to DNA was estimated at -4.5 kcal mol(-1) and this value agrees well with the experimental result. Of six contributions to the final free energy, the interaction energy value is crucial. The intercalation process is governed by the non-covalent stacking (including charge-transfer) interaction while the hydrogen bonding between the ethidium amino groups and the DNA backbone is less important. This is confirmed by the evaluation of the interaction energy as well as by the calculation of the free energy change. The intercalation affects the macroscopic properties of DNA in terms of its flexibility. This explains the easier entry of another intercalator molecule in the vicinity of an existing intercalation site.
Collapse
Affiliation(s)
- Tomás Kubar
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | | | | | | |
Collapse
|
92
|
Snyder RD. Assessment of atypical DNA intercalating agents in biological and in silico systems. Mutat Res 2007; 623:72-82. [PMID: 17434187 DOI: 10.1016/j.mrfmmm.2007.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 11/22/2022]
Abstract
Non-covalent genotoxic interaction between DNA and classical planar fused-ring intercalating agents, has been well understood for some time especially in the context of frameshift mutagenesis in bacterial systems. Recent evidence, however, suggests that a rather wide structural range of small non-fused ring molecules may also be capable of partial or complete DNA intercalation in mammalian cells. The present paper will review recent studies on the identification and characterization of such atypically-structured molecules utilizing both cell-based and three-dimensional computational analyses focusing principally on prediction and detection of these atypical molecules. Mechanistic aspects of genotoxicity of such non-covalent binding molecules, with emphasis on marketed pharmaceuticals, will also be discussed. A review and presentation of new data using catalytic DNA topo II inhibitors, confirms the notion that topoisomerase II poisoning arising via intercalation is the major mechanism of genotoxicity of these drugs.
Collapse
Affiliation(s)
- Ronald D Snyder
- Department of Genetic and Molecular Toxicology, Schering-Plough Research Institute, 556 Morris Ave, Summit, NJ 07901, United States.
| |
Collapse
|