51
|
De Grandis V, Bizzarri AR, Cannistraro S. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. J Mol Recognit 2007; 20:215-26. [PMID: 17703463 DOI: 10.1002/jmr.840] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular interaction between p53 tumor suppressor and the copper protein azurin (AZ) has been demonstrated to enhance p53 stability and hence antitumoral function, opening new perspectives in cancer treatment. While some experimental work has provided evidence for AZ binding to p53, no crystal structure for the p53-AZ complex was solved thus far. In this work the association between AZ and the p53 DNA-binding domain (DBD) was investigated by computational methods. Using a combination of rigid-body protein docking, experimental mutagenesis information, and cluster analysis 10 main p53 DBD-AZ binding modes were generated. The resulting structures were further characterized by molecular dynamics (MD) simulations and free energy calculations. We found that the highest scored docking conformation for the p53 DBD-AZ complex also yielded the most favorable free energy value. This best three-dimensional model for the complex was validated by using a computational mutagenesis strategy. In this structure AZ binds to the flexible L(1) and s(7)-s(8) loops of the p53 DBD and stabilizes them through protein-protein tight packing interactions, resulting in high degree of both surface matching and electrostatic complementarity.
Collapse
Affiliation(s)
- Valentina De Grandis
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell'Università-I-01100 Viterbo, Italy
| | | | | |
Collapse
|
52
|
Yersin A, Steiner P. Receptor trafficking and AFM. Pflugers Arch 2007; 456:189-98. [DOI: 10.1007/s00424-007-0380-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/26/2007] [Indexed: 12/27/2022]
|
53
|
Yersin A, Osada T, Ikai A. Exploring transferrin-receptor interactions at the single-molecule level. Biophys J 2007; 94:230-40. [PMID: 17872962 PMCID: PMC2134874 DOI: 10.1529/biophysj.107.114637] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interaction between the iron transporter protein transferrin (Tf) and its receptor at the cell surface is fundamental for most living organisms. Tf receptor (TfR) binds iron-loaded Tf (holo-Tf) and transports it to endosomes, where acidic pH favors iron release. Iron-free Tf (apo-Tf) is then brought back to the cell surface and dissociates from TfR. Here we investigated the Tf-TfR interaction at the single-molecule level under different conditions encountered during the Tf cycle. An atomic force microscope tip functionalized with holo-Tf or apo-Tf was used to probe TfR. We tested both purified TfR anchored to a mica substrate and in situ TfR at the surface of living cells. Dynamic force measurements showed similar results for TfR on mica or at the cell surface but revealed striking differences between holo-Tf-TfR and apo-Tf-TfR interactions. First, the forces necessary to unbind holo-Tf and TfR are always stronger compared to the apo-Tf-TfR interaction. Second, dissociation of holo-Tf-TfR complex involves overcoming two energy barriers, whereas the apo-Tf-TfR unbinding pathway comprises only one energy barrier. These results agree with a model that proposes differences in the contact points between holo-Tf-TfR and apo-Tf-TfR interactions.
Collapse
Affiliation(s)
- Alexandre Yersin
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | | | | |
Collapse
|
54
|
Yersin A, Hirling H, Kasas S, Roduit C, Kulangara K, Dietler G, Lafont F, Catsicas S, Steiner P. Elastic properties of the cell surface and trafficking of single AMPA receptors in living hippocampal neurons. Biophys J 2007; 92:4482-9. [PMID: 17400692 PMCID: PMC1877771 DOI: 10.1529/biophysj.106.092742] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 02/21/2007] [Indexed: 11/18/2022] Open
Abstract
Although various approaches are routinely used to study receptor trafficking, a technology that allows for visualizing trafficking of single receptors at the surface of living cells remains lacking. Here we used atomic force microscope to simultaneously probe the topography of living cells, record the elastic properties of their surface, and examine the distribution of transfected alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)-type glutamate receptors (AMPAR). On nonstimulated neurons, AMPARs were located in stiff nanodomains with high elasticity modulus relative to the remaining cell surface. Receptor stimulation with N-methyl-D-aspartate (NMDA) provoked a permanent disappearance of these stiff nanodomains followed by a decrease (53%) of the number of surface AMPARs. Blocking electrical activity before NMDA stimulation recruited the same number of AMPARs for internalization, preceded by the loss of the stiff nanodomains. However, in that case, the stiff nanodomains were recovered and AMPARs were reinserted into the membrane shortly after. Our results show that modulation of receptor distribution is accompanied by changes in the local elastic properties of cell membrane. We postulate, therefore, that the mechanical environment of a receptor might be critical to determine its specific distribution behavior in response to different stimuli.
Collapse
Affiliation(s)
- Alexandre Yersin
- Brain Mind Institute, Faculté des Sciences de la Vie, and Institut de Physique de la Matière Complexe, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ebner A, Wildling L, Kamruzzahan ASM, Rankl C, Wruss J, Hahn CD, Hölzl M, Zhu R, Kienberger F, Blaas D, Hinterdorfer P, Gruber HJ. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 2007; 18:1176-84. [PMID: 17516625 DOI: 10.1021/bc070030s] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionalization of atomic force microscope (AFM) tips with bioligands converts them into monomolecular biosensors which can detect complementary receptor molecules on the sample surface. Flexible PEG tethers are preferred because the bioligand can freely reorient and locally palpate the sample surface while the AFM tip is moved along. In a well-established coupling scheme [Hinterdorfer et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 3477-3481], a heterobifunctional PEG linker is used to tether thiol-containing bioligands to amino-functionalized AFM tips. Since antibodies contain no free thiol residues, prederivatization with N-succinimidyl 3-(acetylthio)propionate (SATP) is needed which causes a relatively high demand for antibody. The present study offers a convenient alternative with minimal protein consumption (e.g., 5 microg of protein in 50 microL of buffer) and no prederivatization, using a new heterobifunctional cross-linker that has two different amino-reactive functions. One end is an activated carboxyl (N-hydroxysuccinimide ester) which is much faster to react with the amino groups of the tips than the benzaldehyde function on its other end. The reactivity of the latter is sufficient, however, to covalently bind lysine residues of proteins via Schiff base formation. The method has been critically examined, using biotinylated IgG as bioligand on the tip and mica-bound avidin as complementary receptor. These experiments were well reproduced on amino-functionalized silicon nitride chips where the number of specifically bound IgG molecules (approximately 2000 per microm2) was estimated from the amount of specifically bound ExtrAvidin-peroxidase conjugate. For a bioscientific application, human rhinovirus particles were tethered to the tip, very-low-density lipoprotein receptor fragments were tethered to mica, and the specific interaction was studied by force microscopy.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute of Biophysics, J. Kepler University, Altenberger Strasse 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J 2007; 93:L11-3. [PMID: 17496017 PMCID: PMC1896235 DOI: 10.1529/biophysj.107.109751] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combination of high-resolution atomic force microscope topography imaging with single molecule force spectroscopy provides a unique possibility for the detection of specific molecular recognition events. The identification and localization of specific receptor binding sites on complex heterogeneous biosurfaces such as cells and membranes are of particular interest in this context. Here simultaneous topography and recognition imaging (TREC) was applied to gently fixed microvascular endothelial cells from mouse myocardium (MyEnd) to identify binding sites of vascular endothelial (VE)-cadherin, known to play a crucial role in calcium-dependent, homophilic cell-to-cell adhesion. TREC images were acquired with magnetically oscillating atomic-force microscope tips functionalized with a recombinant VE-cadherin-Fc cis-dimer. The recognition images revealed single molecular binding sites and prominent, irregularly shaped dark spots (domains) with sizes ranging from 10 to 100 nm. These domains arose from a decrease of the oscillation amplitude during specific binding between active VE-cadherin cis-dimers. The VE-cadherin clusters were subsequently assigned to topography features. TREC represents an exquisite method to quickly obtain the local distribution of receptors on cellular surface with an unprecedented lateral resolution of 5 nm.
Collapse
|
57
|
Bonanni B, Andolfi L, Bizzarri AR, Cannistraro S. Functional Metalloproteins Integrated with Conductive Substrates: Detecting Single Molecules and Sensing Individual Recognition Events. J Phys Chem B 2007; 111:5062-75. [PMID: 17425359 DOI: 10.1021/jp070035m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past decade, there has been significant interest in the integration of biomaterials with electronic elements: combining biological functions of biomolecules with nanotechnology offers new perspectives for implementation of ultrasensitive hybrid nanodevices. In particular, great attention has been devoted to redox metalloproteins, since they possess unique characteristics, such as electron-transfer capability, possibility of gating redox activity, and nanometric size, which make them appealing for bioelectronics applications at the nanoscale. The reliable connection of redox proteins to electrodes, aimed at ensuring good electrical contact with the conducting substrate besides preserving protein functionality, is a fundamental step for designing a hybrid nanodevice and calls for a full characterization of the immobilized proteins, possibly at the single-molecule level. Here, we describe how a multitechnique approach, based on several scanning probe microscopy techniques, may provide a comprehensive characterization of different metalloproteins on metal electrodes, disclosing unique information not only about morphological properties of the adsorbed molecules but also about the effectiveness of electrical coupling with the conductive substrate, or even concerning the preserved biorecognition capability upon adsorption. We also show how the success of an immobilization strategy, which is of primary importance for optimal integration of metalloproteins with a metal electrode, can be promptly assessed by means of the proposed approach. Besides the characterization aspect, the complementary employment of the proposed techniques deserves major potentialities for ultrasensitive detection of adsorbed biomolecules. In particular, it is shown how sensing of single metalloproteins may be optimized by monitoring the most appropriate observable. Additionally, we suggest how the combination of several experimental techniques might offer increased versatility, real-time response, and wide applicability as a detection method, once a reproducible correlation among signals coming from different single-molecule techniques is established.
Collapse
Affiliation(s)
- B Bonanni
- Biophysics and Nanoscience Centre, CNISM, and CNR-INFM Facoltà di Scienze, Università della Tuscia, Largo dell'Università, I-01100 Viterbo, Italy
| | | | | | | |
Collapse
|
58
|
Gil R, Guillerez MG, Poulin JC, Schulz E. Charge-transfer complex study by chemical force spectroscopy: a dynamic force spectroscopic approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:542-8. [PMID: 17209605 DOI: 10.1021/la062169h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Charge-transfer interaction, as a reversible and rapid phenomenon, was evidenced by force microscopy. Pull-off forces were measured between a tip grafted with a trinitrofluorenone derivative and a surface functionalized with an electron-rich aromatic anthracene compound in a dodecane environment. The effect of the sweep time on the measured interaction forces is described, together with an extensive study of a competitive influence of free aromatic molecules in dodecane diluted solutions. These forces depend on the nature of the competitor and its concentration as well as on the velocity of tip/sample separation.
Collapse
Affiliation(s)
- Richard Gil
- Equipe Catalyse Moléculaire, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, Bât 420, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
59
|
Kamruzzahan ASM, Ebner A, Wildling L, Kienberger F, Riener CK, Hahn CD, Pollheimer PD, Winklehner P, Hölzl M, Lackner B, Schörkl DM, Hinterdorfer P, Gruber HJ. Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug Chem 2007; 17:1473-81. [PMID: 17105226 DOI: 10.1021/bc060252a] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent binding of bioligands to atomic force microscope (AFM) tips converts them into monomolecular biosensors by which cognate receptors can be localized on the sample surface and fine details of ligand-receptor interaction can be studied. Tethering of the bioligand to the AFM tip via a approximately 6 nm long, flexible poly(ethylene glycol) linker (PEG) allows the bioligand to freely reorient and to rapidly "scan" a large surface area while the tip is at or near the sample surface. In the standard coupling scheme, amino groups are first generated on the AFM tip. In the second step, these amino groups react with the amino-reactive ends of heterobifunctional PEG linkers. In the third step, the 2-pyridyl-S-S groups on the free ends of the PEG chains react with protein thiol groups to give stable disulfide bonds. In the present study, this standard coupling scheme has been critically examined, using biotinylated IgG with free thiols as the bioligand. AFM tips with PEG-tethered biotin-IgG were specifically recognized by avidin molecules that had been adsorbed to mica surfaces. The unbinding force distribution showed three maxima that reflected simultaneous unbinding of 1, 2, or 3 IgG-linked biotin residues from the avidin monolayer. The coupling scheme was well-reproduced on amino-functionalized silicon nitride chips, and the number of covalently bound biotin-IgG per microm2 was estimated by the amount of specifically bound ExtrAvidin-peroxidase conjugate. Coupling was evidently via disulfide bonds, since only biotin-IgG with free thiol groups was bound to the chips. The mechanism of protein thiol coupling to 2-pyridyl-S-S-PEG linkers on AFM tips was further examined by staging the coupling step in bulk solution and monitoring turnover by release of 2-pyridyl-SH which tautomerizes to 2-thiopyridone and absorbs light at 343 nm. These experiments predicted 10(3)-fold slower rates for the disulfide coupling step than actually observed on AFM tips and silicon nitride chips. The discrepancy was reconciled by assuming 10(3)-fold enrichment of protein on AFM tips via preadsorption, as is known to occur on comparable inorganic surfaces.
Collapse
Affiliation(s)
- A S M Kamruzzahan
- Institute of Biophysics and Institute of Organic Chemistry, J. Kepler University, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bizzarri AR, Brunori E, Bonanni B, Cannistraro S. Docking and molecular dynamics simulation of the Azurin–Cytochrome c551 electron transfer complex. J Mol Recognit 2007; 20:122-31. [PMID: 17407190 DOI: 10.1002/jmr.820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We coupled protein-protein docking procedure with molecular dynamics (MD) simulation to investigate the electron transfer (ET) complex Azurin-Cytochrome c551 whose transient character makes difficult a direct experimental investigation. The ensemble of complexes generated by the docking algorithm are filtered according to both the distance between the metal ions in the redox centres of the two proteins and to the involvement of suitable residues at the interface. The resulting best complex (BC) is characterized by a distance of 1.59 nm and involves Val23 and Ile59 of Cytochrome c551. The ET properties have been evaluated in the framework of the Pathways model and compared with experimental data. A 60 ns long MD simulation, carried on at full hydration, evidenced that the two protein molecules retain their mutual spatial positions upon forming the complex. An analysis of the ET properties of the complex, monitored at regular time intervals, has revealed that several different ET paths are possible, with the occasional intervening of water molecules. Furthermore, the temporal evolution of the geometric distance between the two redox centres is characterized by very fast fluctuations around an average value of 1.6 nm, with periodic jumps at 2 nm with a frequency of about 70 MHz. Such a behaviour is discussed in connection with a nonlinear dynamics of protein systems and its possible implications in the ET process are explored.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Università della Tuscia, Largo dell'Università, I-01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
61
|
Bizzarri AR. Topological and dynamical properties of Azurin anchored to a gold substrate as investigated by molecular dynamics simulation. Biophys Chem 2006; 122:206-14. [PMID: 16631301 DOI: 10.1016/j.bpc.2006.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/16/2006] [Accepted: 03/19/2006] [Indexed: 11/20/2022]
Abstract
A classical molecular dynamics study of the electron transfer protein azurin, covalently bound to a gold substrate through its native disulphide group, is carried out at full hydration. With the aim of investigating the effects on the protein structure and dynamics as induced by the presence of an electric field, simulations are performed on neutral, positively and negatively charged substrates. A number of parameters, such as the average structure, the root mean square deviations and fluctuations, the intraprotein hydrogen bonds and solvent accessible surface of the protein, are monitored during 10 ns of run. The orientation, the height and the lateral size of the protein, with respect to the substrate are evaluated and compared with the experimental data obtained by scanning probe nanoscopies. The electron transfer properties between the copper redox center and the disulphide bridge bound to the substrate are investigated and briefly discussed.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Dipartimento di Scienze Ambientali, Università della Tuscia, I-01100 Viterbo, Italy.
| |
Collapse
|
62
|
Bonanni B, Bizzarri AR, Cannistraro S. Optimized Biorecognition of Cytochrome c 551 and Azurin Immobilized on Thiol-Terminated Monolayers Assembled on Au(111) Substrates. J Phys Chem B 2006; 110:14574-80. [PMID: 16869557 DOI: 10.1021/jp0610315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular recognition between two redox partners, azurin and cytochrome c 551, is studied at the single-molecule level by means of atomic force spectroscopy, after optimizing azurin adsorption on gold via sulfhydryl-terminated alkanethiol spacers. Our experiments provide evidence of specific interaction between the two partners, thereby demonstrating that azurin preserves biorecognition capability when assembled on gold via these spacers. Additionally, the measured single-molecule kinetic reaction rate results are consistent with a likely transient nature of the complex. Interestingly, the immobilization strategy adopted here, which was previously demonstrated to favor electrical coupling between azurin (AZ) and the metal electrode, is also found to facilitate AZ interaction with the redox partner, if compared to the case of AZ directly adsorbed on bare gold. Our findings confirm the key role of a well-designed immobilization strategy, capable of optimizing both biorecognition capabilities and electrical coupling with the conductive substrate at the single-molecule level, as a starting point for advanced applications of redox proteins for ultrasensitive biosensing.
Collapse
Affiliation(s)
- B Bonanni
- Biophysics and Nanoscience Centre, CNISM, and CNR-INFM, Dipartimento di Scienze Ambientali, Università della Tuscia, Largo dell'Università, I-01100 Viterbo, Italy.
| | | | | |
Collapse
|
63
|
Thordarson P, Atkin R, Kalle WHJ, Warr GG, Braet F. Developments in Using Scanning Probe Microscopy To Study Molecules on Surfaces — From Thin Films and Single-Molecule Conductivity to Drug–Living Cell Interactions. Aust J Chem 2006. [DOI: 10.1071/ch06043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Scanning probe microscopy (SPM) techniques, including atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), have revolutionized our understanding of molecule–surface interactions. The high resolution and versatility of SPM techniques have helped elucidate the morphology of adsorbed surfactant layers, facilitated the study of electronically conductive single molecules and biomolecules connected to metal substrates, and allowed direct observation of real-time processes such as in situ DNA hybridization and drug–cell interactions. These examples illustrate the power that SPM possesses to study (bio)molecules on surfaces and will be discussed in depth in this review.
Collapse
|