51
|
Rocco AG, Gianazza E, Calabresi L, Sensi C, Franceschini G, Sirtori CR, Eberini I. Structural features and dynamics properties of human apolipoprotein A-I in a model of synthetic HDL. J Mol Graph Model 2009; 28:305-12. [PMID: 19740687 DOI: 10.1016/j.jmgm.2009.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
High-density lipoproteins (HDL) play a major role in the reverse transport of cholesterol and have antiatherogenic activities. Their major protein component is apolipoprotein (apo) A-I. While apoA-I amphipathic alpha-helix based secondary structure has been extensively investigated, for its lipid-bound tertiary structure only theoretical models have been proposed. In the past years, experimental approaches aimed at a direct visualization of HDL structure have been exploited, but data obtained through different microscopy techniques are conflicting and do not settle the issue. Here we present a 50 ns molecular dynamics simulation of a synthetic HDL containing two molecules of apoA-I and 101 of l-alpha-palmitoyl-oleoyl-phosphatidylcholine. Essential dynamics and structural property investigations suggest that the stabilization of the system is obtained through specific motions, whose driving forces are protein-phospholipid interactions. The most important are: the relative sliding of the two apoA-I molecules along their major axes, the relative rotation of the protein chains, and the out-of-plane deformation around proline hinges. The sliding and the out-of-plane deformation allow apoA-I to optimize its interactions with phospholipids, while the rotation is useful to maximize protein-protein salt bridges. The correspondence between computed parameters and their experimental counterparts contributes to validate our model and its dynamic behaviors. Our findings help in defining a molecular model for apoA-I contained in HDL and suggest a possible mechanism through which apoA-I can vary its diameter and accommodate different numbers of phospholipids during the metabolism of HDL.
Collapse
Affiliation(s)
- Alessandro Guerini Rocco
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
52
|
Miyazaki M, Nakano M, Fukuda M, Handa T. Smaller Discoidal High-Density Lipoprotein Particles Form Saddle Surfaces, but Not Planar Bilayers. Biochemistry 2009; 48:7756-63. [DOI: 10.1021/bi900785x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masakazu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Nakano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masakazu Fukuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsurou Handa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
53
|
Abstract
Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation.
Collapse
Affiliation(s)
- Amy Y Shih
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
54
|
Thaxton CS, Daniel WL, Giljohann DA, Thomas AD, Mirkin CA. Templated spherical high density lipoprotein nanoparticles. J Am Chem Soc 2009; 131:1384-5. [PMID: 19133723 DOI: 10.1021/ja808856z] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the synthesis of high density lipoprotein (HDL) biomimetic nanoparticles capable of binding cholesterol. These structures use a gold nanoparticle core to template the assembly of a mixed phospholipid layer and the adsorption of apolipoprotein A-I. These synthesized structures have the general size and surface composition of natural HDL and, importantly, bind free cholesterol (K(d) = 4 nM). The determination of the K(d) for these particles, with respect to cholesterol complexation, provides a key starting and comparison point for measuring and evaluating the properties of subsequently developed synthetic versions of HDL.
Collapse
Affiliation(s)
- C Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 East Chicago Avenue, Tarry 16-703, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
55
|
Jones MK, Catte A, Patterson JC, Gu F, Chen J, Li L, Segrest JP. Thermal stability of apolipoprotein A-I in high-density lipoproteins by molecular dynamics. Biophys J 2009; 96:354-71. [PMID: 19167289 DOI: 10.1016/j.bpj.2008.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein (apo) A-I is an unusually flexible protein whose lipid-associated structure is poorly understood. Thermal denaturation, which is used to measure the global helix stability of high-density lipoprotein (HDL)-associated apoA-I, provides no information about local helix stability. Here we report the use of temperature jump molecular dynamics (MD) simulations to scan the per-residue helix stability of apoA-I in phospholipid-rich HDL. When three 20 ns MD simulations were performed at 500 K on each of two particles created by MD simulations at 310 K, bilayers remained intact but expanded by 40%, and total apoA-I helicity decreased from 95% to 72%. Of significance, the conformations of the overlapping N- and C-terminal domains of apoA-I in the particles were unusually mobile, exposing hydrocarbon regions of the phospholipid to solvent; a lack of buried interhelical salt bridges in the terminal domains correlated with increased mobility. Nondenaturing gradient gels show that 40% expansion of the phospholipid surface of 100:2 particles by addition of palmitoyloleoylphosphatidylcholine exceeds the threshold of particle stability. As a unifying hypothesis, we propose that the terminal domains of apoA-I are phospholipid concentration-sensitive molecular triggers for fusion/remodeling of HDL particles. Since HDL remodeling is necessary for cholesterol transport, our model for remodeling has substantial biomedical implications.
Collapse
Affiliation(s)
- Martin K Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Sorci-Thomas MG, Bhat S, Thomas MJ. Activation of lecithin:cholesterol acyltransferase by HDL ApoA-I central helices. CLINICAL LIPIDOLOGY 2009; 4:113-124. [PMID: 20582235 PMCID: PMC2891274 DOI: 10.2217/17584299.4.1.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is an enzyme that first hydrolyzes the sn-2 position of phospholipids, preferentially a diacylphosphocholine, and then transfers the fatty acid to cholesterol to yield a cholesteryl ester. HDL ApoA-I is the principal catalytic activator for LCAT. Activity of LCAT on nascent or lipid-poor HDL particles composed of phospholipid, cholesterol and ApoA-I allows the maturation of HDL particles into lipid-rich spherical particles that contain a core of cholesteryl ester surrounded by phospholipid and ApoA-I on the surface. This article reviews the recent progress in elucidating structural aspects of the interaction between LCAT and ApoA-I. In the last decade, there has been considerable progress in understanding the structure of ApoA-I and the central helices 5, 6, and 7 that are known to activate LCAT. However, much less information has been forthcoming describing the 3D structure and conformation of LCAT required to catalyze two separate reactions within a single monomeric peptide.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1016, USA, Tel.: +1 336 716 2147, Fax: +1 336 716 6279,
| | - Shaila Bhat
- Department of Pathology, Lipid Sciences Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA, Tel.: +1 336 716 6062, Fax: +1 336 716 6279,
| | - Michael J Thomas
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA, Tel.: +1 336 716 2313, Fax: +1 336 716 6279,
| |
Collapse
|
57
|
Hall A, Repakova J, Vattulainen I. Modeling of the triglyceride-rich core in lipoprotein particles. J Phys Chem B 2008; 112:13772-82. [PMID: 18844397 DOI: 10.1021/jp803950w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triglycerides are a major component of many important biological entities such as lipoproteins and lipid droplets. This work focuses on two common triglycerides, tripalmitin and triolein, which have been simulated through atomistic molecular dynamics at temperatures of 310 and 350 K for 300-700 ns. In these systems, both structural and dynamical properties have been characterized, paying particular attention to understanding the packing of triglyceride molecules and their molecular conformations. Additionally, we study the liquid-to-crystalline phase transition of tripalmitin through a temperature quench from the high-temperature isotropic liquid phase to 310 K, corresponding to a polymorphic, crystalline-like phase. The transition is characterized in detail through density, average molecular shape, and, in particular, the relevant order parameter describing the transition.
Collapse
Affiliation(s)
- Anette Hall
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | | | | |
Collapse
|
58
|
Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci U S A 2008; 105:12176-81. [PMID: 18719128 DOI: 10.1073/pnas.0803626105] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spherical high density lipoproteins (HDL) predominate in human plasma. However, little information exists on the structure of the most common HDL protein, apolipoprotein (apo) A-I, in spheres vs. better studied discoidal forms. We produced spherical HDL by incubating reconstituted discoidal HDL with physiological plasma-remodeling enzymes and compared apoA-I structure in discs and spheres of comparable diameter (79-80 and 93-96 A). Using cross-linking chemistry and mass spectrometry, we determined that the general structural organization of apoA-I was overall similar between discs and spheres, regardless of diameter. This was the case despite the fact that the 93 A spheres contained three molecules of apoA-I per particle compared with only two in the discs. Thus, apoA-I adopts a consistent general structural framework in HDL particles-irrespective of shape, size and the number of apoA-Is present. Furthermore, a similar cross-linking pattern was demonstrated in HDL particles isolated from human serum. We propose the first experiment-based molecular model of apoA-I in spherical HDL particles. This model provides a new foundation for understanding how apoA-I structure modulates HDL function and metabolism.
Collapse
|
59
|
Thomas MJ, Bhat S, Sorci-Thomas MG. Three-dimensional models of HDL apoA-I: implications for its assembly and function. J Lipid Res 2008; 49:1875-83. [PMID: 18515783 DOI: 10.1194/jlr.r800010-jlr200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight recent advances toward the refinement of a three-dimensional structure for lipid-bound apolipoprotein A-I (apoA-I) on recombinant HDL. Recently, X-ray crystallography has yielded a new structure for full-length, lipid-free apoA-I. Although this approach has not yet been successful in solving the three-dimensional structure of lipid-bound apoA-I, analysis of the X-ray structures has been of immense help in the interpretation of structural data obtained from other methods that yield structural information. Recent studies emphasize the use of mass spectrometry to unambiguously identify cross-linked peptides or to quantify solvent accessibility using hydrogen-deuterium exchange. The combination of mass spectrometry, molecular modeling, molecular dynamic analysis, and small-angle X-ray diffraction has provided additional structural information on apoA-I folding that complements previous approaches.
Collapse
Affiliation(s)
- Michael J Thomas
- Department of Biochemistry, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
60
|
Blanchette CD, Law R, Benner WH, Pesavento JB, Cappuccio JA, Walsworth V, Kuhn EA, Corzett M, Chromy BA, Segelke BW, Coleman MA, Bench G, Hoeprich PD, Sulchek TA. Quantifying size distributions of nanolipoprotein particles with single-particle analysis and molecular dynamic simulations. J Lipid Res 2008; 49:1420-30. [PMID: 18403317 DOI: 10.1194/jlr.m700586-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon. Understanding the source of this heterogeneity may lead to methods to mitigate heterogeneity or to control NLP size, which may be important for tailoring NLPs for specific membrane proteins. Here, we have used atomic force microscopy, ion mobility spectrometry, and transmission electron microscopy to quantify NLP size distributions on the single-particle scale, specifically focusing on assemblies with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a recombinant apolipoprotein E variant containing the N-terminal 22 kDa fragment (E422k). Four discrete sizes of E422k/DMPC NLPs were identified by all three techniques, with diameters centered at approximately 14.5, 19, 23.5, and 28 nm. Computer simulations suggest that these sizes are related to the structure and number of E422k lipoproteins surrounding the NLPs and particles with an odd number of lipoproteins are consistent with the double-belt model, in which at least one lipoprotein adopts a hairpin structure.
Collapse
Affiliation(s)
- Craig D Blanchette
- Chemistry, Materials, and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cavigiolio G, Shao B, Geier EG, Ren G, Heinecke JW, Oda MN. The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses. Biochemistry 2008; 47:4770-9. [PMID: 18366184 DOI: 10.1021/bi7023354] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.
Collapse
|
62
|
Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J Mol Biol 2008; 377:1067-81. [PMID: 18313692 DOI: 10.1016/j.jmb.2008.01.066] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/23/2022]
Abstract
Human apolipoprotein A-I (apo A-I) and its engineered constructs form discoidal lipid bilayers upon interaction with lipids in vitro. We now report the cloning, expression, and purification of apo A-I derived from zebrafish (Danio rerio), which combines with phospholipids to form similar discoidal bilayers and may prove to be superior to human apo A-I constructs for rapid reconstitution of seven-transmembrane helix receptors into nanoscale apolipoprotein bound bilayers (NABBs). We characterized NABBs by gel-filtration chromatography, native polyacrylamide gradient gel electrophoresis, UV-visible photobleaching difference spectroscopy, and fluorescence spectroscopy. We used electron microscopy to determine the stoichiometry and orientation of rhodopsin (rho)-containing NABBs prepared under various conditions and correlated stability and signaling efficiency of rho in NABBs with either one or two receptors. We discovered that the specific activity of G protein coupling for single rhos sequestered in individual NABBs was nearly identical with that of two rhos per NABB under conditions where stoichiometry and orientation could be inferred by electron microscopy imaging. Thermal stability of rho in NABBs was superior to that of rho in various commonly used detergents. We conclude that the NABB system using engineered zebrafish apo A-I is a native-like membrane mimetic system for G-protein-coupled receptors and discuss strategies for rapid incorporation of expressed membrane proteins into NABBs.
Collapse
|
63
|
Chapter 11 Molecular Modeling of the Structural Properties and Formation of High-Density Lipoprotein Particles. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
64
|
Structure of spheroidal HDL particles revealed by combined atomistic and coarse-grained simulations. Biophys J 2007; 94:2306-19. [PMID: 18065479 DOI: 10.1529/biophysj.107.115857] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spheroidal high-density lipoprotein (HDL) particles circulating in the blood are formed through an enzymatic process activated by apoA-I, leading to the esterification of cholesterol, which creates a hydrophobic core of cholesteryl ester molecules in the middle of the discoidal phospholipid bilayer. In this study, we investigated the conformation of apoA-I in model spheroidal HDL (ms-HDL) particles using both atomistic and coarse-grained molecular dynamics simulations, which are found to provide consistent results for all HDL properties we studied. The observed small contribution of cholesteryl oleate molecules to the solvent-accessible surface area of the entire ms-HDL particle indicates that palmitoyloleoylphosphatidylcholines and apoA-I molecules cover the hydrophobic core comprised of cholesteryl esters particularly well. The ms-HDL particles are found to form a prolate ellipsoidal shape, with sizes consistent with experimental results. Large rigid domains and low mobility of the protein are seen in all the simulations. Additionally, the average number of contacts of cholesteryl ester molecules with apoA-I residues indicates that cholesteryl esters interact with protein residues mainly through their cholesterol moiety. We propose that the interaction of annular cholesteryl oleate molecules contributes to apoA-I rigidity stabilizing and regulating the structure and function of the ms-HDL particle.
Collapse
|
65
|
Shih AY, Arkhipov A, Freddolino L, Sligar SG, Schulten K. Assembly of lipids and proteins into lipoprotein particles. J Phys Chem B 2007; 111:11095-104. [PMID: 17696388 DOI: 10.1021/jp072320b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The self-assembly of reconstituted discoidal high-density lipoproteins, known as nanodiscs, was studied using coarse-grained molecular dynamics and small-angle X-ray scattering. In humans, high-density lipoprotein particles transport cholesterol in the blood and facilitate the removal of excess cholesterol from the body. Native high-density lipoprotein exhibits a wide variety of shapes and sizes, forming lipid-free/poor, nascent discoidal, and mature spherical particles. Little is known about how these lipoprotein particles assemble and transform from one state to another. Multiple 10 micros coarse-grained simulations reveal the assembly of discoidal high-density lipoprotein particles from disordered protein-lipid complexes. Small-angle X-ray scattering patterns were calculated from the final assembled structures and compared with experimental measurements carried out for this study to verify the accuracy of the coarse-grained simulations. Results show that hydrophobic interactions assemble, within several microseconds, the amphipathic helical proteins and lipids into roughly discoidal particles, while the proteins assume a final approximate double-belt configuration on a slower time scale.
Collapse
Affiliation(s)
- Amy Y Shih
- Center for Biophysics and Computational Biology, Beckman Institute for Advance Science and Technology, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
66
|
Bhat S, Sorci-Thomas MG, Tuladhar R, Samuel MP, Thomas MJ. Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes. Biochemistry 2007; 46:7811-21. [PMID: 17563120 PMCID: PMC2553278 DOI: 10.1021/bi700384t] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The conformational constraints for apoA-I bound to recombinant phospholipid complexes (rHDL) were attained from a combination of chemical cross-linking and mass spectrometry. Molecular distances were then used to refine models of lipid-bound apoA-I on both 80 and 96 A diameter rHDL particles. To obtain molecular constraints on the protein bound to phospholipid complexes, three different lysine-selective homo-bifunctional cross-linkers with increasing spacer arm lengths (i.e., 7.7, 12.0, and 16.1 A) were reacted with purified, homogeneous recombinant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) apoA-I rHDL complexes of each diameter. Cross-linked dimeric apoA-I products were separated from monomeric apoprotein using 12% SDS-PAGE, then subjected to in-gel trypsin digest, and identified by MS/MS sequencing. These studies aid in the refinement of our previously published molecular model of two apoA-I molecules bound to approximately 150 molecules of POPC and suggest that the protein hydrophobic interactions at the N- and C-terminal domains decrease as the number of phospholipid molecules or "lipidation state" of apoA-I increases. Thus, it appears that these incremental changes in the interaction between the N- and C-terminal ends of apoA-I stabilize its tertiary conformation in the lipid-free state as well as allowing it to unfold and sequester discrete amounts of phospholipid molecules.
Collapse
Affiliation(s)
- Shaila Bhat
- Department of Pathology, Center for Lipid Science, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
| | - Mary G Sorci-Thomas
- Department of Biochemistry, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
- Department of Pathology, Center for Lipid Science, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
| | - Rubina Tuladhar
- Department of Biochemistry, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
| | - Michael P. Samuel
- Department of Biochemistry, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest University Medical Center, 391 Technology Way, Building A1, Winston-Salem, NC 27101
| |
Collapse
|
67
|
Vainikka K, Chen J, Metso J, Jauhiainen M, Riekkola ML. Coating of open tubular capillaries with discoidal and spherical high-density lipoprotein particles in electrochromatography. Electrophoresis 2007; 28:2267-74. [PMID: 17607811 DOI: 10.1002/elps.200600766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new method was developed for the coating of fused-silica capillaries with human high-density lipoproteins (HDLs) for use in electrochromatography. The HDL particles used for the coating differed in particle shape and composition. Both discoidal and spherical particles formed a monolayer on the inner silica wall as confirmed by atomic force microscopy. The effect of coating conditions, such as HDL concentration and coating time, was investigated with spherical HDL particles. Examination of the influence of pH on the coating stability also allowed the determination of pI values for the HDL particles attached to the capillary wall. The pI values for spherical and discoidal HDL particles were close to 5.0. The repeatabilities of the EOF mobility and the retention factors of the uncharged steroid hormones used as model compounds were exploited in the evaluation of the coating stability. The optimal coating was achieved with 0.1 mg/mL HDL protein and 50 min flushing with coating solution followed by 15 min standing time. Electrochromatography with HDL-coated open tubular capillaries offers a new tool for the study of HDL particle structure and transformations.
Collapse
Affiliation(s)
- Kati Vainikka
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
68
|
Shih AY, Freddolino L, Sligar SG, Schulten K. Disassembly of nanodiscs with cholate. NANO LETTERS 2007; 7:1692-6. [PMID: 17503871 DOI: 10.1021/nl0706906] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanodiscs are protein-lipid particles that furnish a nanometer-sized membrane environment for the investigation of membrane proteins. Nanodiscs assemble spontaneously upon the removal of cholate from an initial mixture of cholate, lipids, and engineered amphipathic proteins. A combined experimental-computational approach is applied here to study the disassembly of nanodiscs through the addition of cholate to preformed particles. For this purpose, small-angle X-ray scattering experiments and coarse-grained molecular dynamics simulations were performed and compared. The study offers a detailed view of nanodisc dynamics.
Collapse
Affiliation(s)
- Amy Y Shih
- Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
69
|
Zhu HL, Atkinson D. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I. Biochemistry 2007; 46:1624-34. [PMID: 17279626 PMCID: PMC2518689 DOI: 10.1021/bi061721z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human apolipoprotein A-I (apoA-I) is the principle apolipoprotein of high-density lipoproteins that are critically involved in reverse cholesterol transport. The intrinsically flexibility of apoA-I has hindered studies of the structural and functional details of the protein. Our strategy is to study peptide models representing different regions of apoA-I. Our previous report on [1-44]apoA-I demonstrated that this N-terminal region is unstructured and folds into approximately 60% alpha-helix with a moderate lipid binding affinity. We now present details of the conformation and lipid interaction of a C-terminal 46-residue peptide, [198-243]apoA-I, encompassing putative helix repeats 10 and 9 and the second half of repeat 8 from the C-terminus of apoA-I. Far-ultraviolet circular dichroism spectra show that [198-243]apoA-I is also unfolded in aqueous solution. However, self-association induces approximately 50% alpha-helix in the peptide. The self-associated peptide exists mainly as a tetramer, as determined by native electrophoresis, cross-linking with glutaraldehyde, and unfolding data from circular dichroism (CD) and differential scanning calorimetry (DSC). In the presence of a number of lipid-mimicking detergents, above their CMC, approximately 60% alpha-helix was induced in the peptide. In contrast, SDS, an anionic lipid-mimicking detergent, induced helical folding in the peptide at a concentration of approximately 0.003% (approximately 100 microM), approximately 70-fold below its typical CMC (0.17-0.23% or 6-8 mM). Both monomeric and tetrameric peptide can solubilize dimyristoylphosphatidylcholine (DMPC) liposomes and fold into approximately 60% alpha-helix. Fractionation by density gradient ultracentrifugation and visualization by negative staining electromicroscopy demonstrated that the peptide binds to DMPC with a high affinity to form at least two sizes of relatively homogeneous discoidal HDL-like particles depending on the initial lipid:peptide ratio. The characteristics (lipid:peptide weight ratio, diameter, and density) of both complexes are similar to those of plasma A-I/DMPC complexes formed under similar conditions: small discoidal complexes (approximately 3:1 weight ratio, approximately 110 A, and approximately 1.10 g/cm3) formed at an initial 1:1 weight ratio and larger discoidal complexes (approximately 4.6:1 weight ratio, approximately 165 A, and approximately 1.085 g/cm3) formed at initial 4:1 weight ratio. The cross-linking data for the peptide on the complexes of two sizes is consistent with the calculated peptide numbers per particle. Compared to the approximately 100 A disk-like complex formed by the N-terminal peptide in which helical structure was insufficient to cover the disk edge by a single belt, the compositions of these two types of complexes formed by the C-terminal peptide are more consistent with a "double belt" model, similar to that proposed for full-length apoA-I. Thus, our data provide direct evidence that this C-terminal region of apoA-I is responsible for the self-association of apoA-I, and this C-terminal peptide model can mimic the interaction with the phospholipid of plasma apoA-I to form two sizes of homogeneous discoidal complexes and thus may be responsible for apoA-I function in the formation and maintenance of HDL subspecies in plasma.
Collapse
Affiliation(s)
| | - David Atkinson
- *To whom correspondence should be addressed: Department of Physiology and Biophysics, W308, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526. Phone:(617) 638-4015. Fax:(617) 638-4041. E-mail:
| |
Collapse
|
70
|
Peters-Libeu CA, Newhouse Y, Hall SC, Witkowska HE, Weisgraber KH. Apolipoprotein E*dipalmitoylphosphatidylcholine particles are ellipsoidal in solution. J Lipid Res 2007; 48:1035-44. [PMID: 17308333 DOI: 10.1194/jlr.m600545-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) is a major protein component of cholesterol-transporting lipoprotein particles in the central nervous system and in plasma. Polymorphisms of apoE are associated with cardiovascular disease and with a predisposition to Alzheimer's disease and other forms of neurodegeneration. For full biological activity, apoE must be bound to a lipoprotein particle. Complexes of apoE and phospholipid mimic many of these activities. In contrast to a widely accepted discoidal model of apoA-I bound to dimyristoylphosphatidylcholine, which is based on solution studies, an X-ray diffraction study of apoE bound to dipalmitoylphosphatidylcholine (DPPC) indicated that apoE*DPPC particles are quasi-spheroidal and that the packing of the phospholipid core is similar to a micelle. Using small-angle X-ray scattering, we show that apoE*DPPC particles in solution are ellipsoidal and that the shape of the phospholipid core is compatible with a twisted-bilayer model. The proposed model is consistent with the results of mass spectrometric analysis of products of limited proteolysis. These revealed that the nonlipid-bound regions of apoE in the particle are consistent with an alpha-helical hairpin.
Collapse
Affiliation(s)
- Clare A Peters-Libeu
- Gladstone Institute of Neurological Disease, Biomolecular Resource Center Mass Spectrometry Facility, Department of Cell and Tissue Biology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
71
|
Garda HA. Structure–function relationships in human apolipoprotein A-I: role of a central helix pair. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.1.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Nath A, Atkins WM, Sligar SG. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 2007; 46:2059-69. [PMID: 17263563 DOI: 10.1021/bi602371n] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipid bilayer Nanodiscs are novel model membranes derived from high-density lipoprotein particles and have proven to be useful in studies of membrane proteins. Membrane protein enzymology has been hampered by the inherent insolubility of membrane proteins in aqueous environments and has necessitated the use of model membranes such as liposomes and detergent-stabilized micelles. Current model membranes display a polydisperse particle size distribution and can suffer from problems of inconsistency and instability. It is also unclear how well they mimic biological lipid bilayers. In contrast, Nanodiscs, the particle size of which is constrained by a coat of scaffold proteins, are relatively monodisperse, stable model membranes with a "nativelike" lipid bilayer. Nanodiscs have already been used to study a variety of membrane proteins, including cytochrome P450s, seven-transmembrane proteins, and bacterial chemoreceptors. These proteins are simultaneously monomerized, solubilized, and incorporated into the well-defined membrane environment provided by Nanodiscs. Nanodiscs may also provide useful insights into the thermodynamics and biophysics of biological membranes and binding of small molecules to membranes.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | |
Collapse
|
73
|
Shih AY, Freddolino PL, Arkhipov A, Schulten K. Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 2006; 157:579-92. [PMID: 17070069 DOI: 10.1016/j.jsb.2006.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
High-density lipoproteins (HDL) function as cholesterol transporters, facilitating the removal of excess cholesterol from the body. Due to the heterogeneity of native HDL particles (both in size and shape), the details on how these protein-lipid particles form and the structure they assume in their lipid-associated states are not well characterized. We report here a study of the self-assembly of discoidal HDL particles using coarse-grained (CG) molecular dynamics. The microsecond simulations reveal the self-assembly of HDL particles from disordered protein-lipid complexes to form structures containing many of the features of the generally accepted double-belt model for discoidal HDL particles. HDL assembly is found to proceed in two broad steps, aggregation of proteins and lipids driven by the hydrophobic effect which occurs on a approximately 1 micros time scale, followed by the optimization of the protein structure driven by increasingly specific protein-protein interactions.
Collapse
Affiliation(s)
- Amy Y Shih
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|