51
|
The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Ther 2010; 88:130-4. [PMID: 20520607 DOI: 10.1038/clpt.2010.95] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Side effects account for most of the instances of failure of candidate drugs at late stages of development. These development failures contribute to the exorbitant cost of bringing new compounds to market: a single withdrawal can represent a loss of more than $1 billion. Many unwanted actions of drugs affect the heart, resulting in potentially proarrhythmic alteration of ion channel function. Because these can be fatal, potential electrophysiological cardiotoxicity is among the most stringent exclusion criteria in the licensing process.
Collapse
|
52
|
Goyal A, van den Wijngaard J, van Horssen P, Grau V, Spaan J, Smith N. Intramural spatial variation of optical tissue properties measured with fluorescence microsphere images of porcine cardiac tissue. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:1408-11. [PMID: 19964525 DOI: 10.1109/iembs.2009.5334174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This proceeding studies the optical fluorescence images of a porcine heart filled with microspheres of two colors, carmine and red. A significant difference in the total optical tissue attenuation coefficient was observed between excitation and emission for both carmine (excitation - 13+/-4(1/mm) and emission - 9.4+/-3(1/mm)) and red (excitation -29+/-5(1/mm) and emission - 25+/-5(1/mm)), indicating that optical tissue properties can change significantly for a small change in light wavelength. The above-mentioned large ranges of variation observed in the tissue attenuation coefficient for excitation and emission (both for carmine and red) suggest significant intramural variation of optical properties across the entire organ. Patterns of global spatial variation in optical attenuation properties in tissue across the entire organ were observed. A novel method using fluorescence microsphere images is presented for measurement of the tissue attenuation's intramural variation across an entire organ.
Collapse
Affiliation(s)
- Ayush Goyal
- Computational Biology, Computing Laboratory, University of Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
53
|
Efimov IR, Fedorov VV, Joung B, Lin SF. Mapping cardiac pacemaker circuits: methodological puzzles of the sinoatrial node optical mapping. Circ Res 2010; 106:255-71. [PMID: 20133911 DOI: 10.1161/circresaha.109.209841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Historically, milestones in science are usually associated with methodological breakthroughs. Likewise, the advent of electrocardiography, microelectrode recordings and more recently optical mapping have ushered in new periods of significance of advancement in elucidating basic mechanisms in cardiac electrophysiology. As with any novel technique, however, data interpretation is challenging and should be approached with caution, as it cannot be simply extrapolated from previously used methodologies and with experience and time eventually becomes validated. A good example of this is the use of optical mapping in the sinoatrial node (SAN): when microelectrode and optical recordings are obtained from the same site in myocardium, significantly different results may be noted with respect to signal morphology and as a result have to be interpreted by a different set of principles. Given the rapid spread of the use of optical mapping, careful evaluation must be made in terms of methodology with respect to interpretation of data gathered by optical sensors from fluorescent potential-sensitive dyes. Different interpretations of experimental data may lead to different mechanistic conclusions. This review attempts to address the origin and interpretation of the "double component" morphology in the optical action potentials obtained from the SAN region. One view is that these 2 components represent distinctive signals from the SAN and atrial cells and can be fully separated with signal processing. A second view is that the first component preceding the phase 0 activation represents the membrane currents and intracellular calcium transients induced diastolic depolarization from the SAN. Although the consensus from both groups is that ionic mechanisms, namely the joint action of the membrane and calcium automaticity, are important in the SAN function, it is unresolved whether the double-component originates from the recording methodology or represents the underlying physiology. This overview aims to advance a common understanding of the basic principles of optical mapping in complex 3D anatomic structures.
Collapse
Affiliation(s)
- Igor R Efimov
- Department of Biomedical Engineering, Washington University, One Brookings Dr, St Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
54
|
Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso. Heart Rhythm 2010; 7:692-8. [PMID: 20230927 DOI: 10.1016/j.hrthm.2010.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/10/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Total subcutaneous implantable subcutaneous defibrillators are in development, but optimal electrode configurations are not known. OBJECTIVE We used image-based finite element models (FEM) to predict the myocardial electric field generated during defibrillation shocks (pseudo-DFT) in a wide variety of reported and innovative subcutaneous electrode positions to determine factors affecting optimal lead positions for subcutaneous implantable cardioverter-defibrillators (S-ICD). METHODS An image-based FEM of an adult man was used to predict pseudo-DFTs across a wide range of technically feasible S-ICD electrode placements. Generator location, lead location, length, geometry and orientation, and spatial relation of electrodes to ventricular mass were systematically varied. Best electrode configurations were determined, and spatial factors contributing to low pseudo-DFTs were identified using regression and general linear models. RESULTS A total of 122 single-electrode/array configurations and 28 dual-electrode configurations were simulated. Pseudo-DFTs for single-electrode orientations ranged from 0.60 to 16.0 (mean 2.65 +/- 2.48) times that predicted for the base case, an anterior-posterior configuration recently tested clinically. A total of 32 of 150 tested configurations (21%) had pseudo-DFT ratios </=1, indicating the possibility of multiple novel, efficient, and clinically relevant orientations. Favorable alignment of lead-generator vector with ventricular myocardium and increased lead length were the most important factors correlated with pseudo-DFT, accounting for 70% of the predicted variation (R(2) = 0.70, each factor P < .05) in a combined general linear model in which parameter estimates were calculated for each factor. CONCLUSION Further exploration of novel and efficient electrode configurations may be of value in the development of the S-ICD technologies and implant procedure. FEM modeling suggests that the choice of configurations that maximize shock vector alignment with the center of myocardial mass and use of longer leads is more likely to result in lower DFT.
Collapse
|
55
|
Bishop MJ, Plank G, Burton RAB, Schneider JE, Gavaghan DJ, Grau V, Kohl P. Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am J Physiol Heart Circ Physiol 2009; 298:H699-718. [PMID: 19933417 PMCID: PMC2822578 DOI: 10.1152/ajpheart.00606.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in magnetic resonance (MR) imaging technology have unveiled a wealth of information regarding cardiac histoanatomical complexity. However, methods to faithfully translate this level of fine-scale structural detail into computational whole ventricular models are still in their infancy, and, thus, the relevance of this additional complexity for simulations of cardiac function has yet to be elucidated. Here, we describe the development of a highly detailed finite-element computational model (resolution: approximately 125 microm) of rabbit ventricles constructed from high-resolution MR data (raw data resolution: 43 x 43 x 36 microm), including the processes of segmentation (using a combination of level-set approaches), identification of relevant anatomical features, mesh generation, and myocyte orientation representation (using a rule-based approach). Full access is provided to the completed model and MR data. Simulation results were compared with those from a simplified model built from the same images but excluding finer anatomical features (vessels/endocardial structures). Initial simulations showed that the presence of trabeculations can provide shortcut paths for excitation, causing regional differences in activation after pacing between models. Endocardial structures gave rise to small-scale virtual electrodes upon the application of external field stimulation, which appeared to protect parts of the endocardium in the complex model from strong polarizations, whereas intramural virtual electrodes caused by blood vessels and extracellular cleft spaces appeared to reduce polarization of the epicardium. Postshock, these differences resulted in the genesis of new excitation wavefronts that were not observed in more simplified models. Furthermore, global differences in the stimulus recovery rates of apex/base regions were observed, causing differences in the ensuing arrhythmogenic episodes. In conclusion, structurally simplified models are well suited for a large range of cardiac modeling applications. However, important differences are seen when behavior at microscales is relevant, particularly when examining the effects of external electrical stimulation on tissue electrophysiology and arrhythmia induction. This highlights the utility of histoanatomically detailed models for investigations of cardiac function, in particular for future patient-specific modeling.
Collapse
Affiliation(s)
- Martin J Bishop
- University of Oxford Computing Laboratory, Parks Road, Oxford OX1 3QD, UK.
| | | | | | | | | | | | | |
Collapse
|
56
|
Trayanova NA, Tice BM. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart. ACTA ACUST UNITED AC 2009; 6:85-91. [PMID: 20628585 DOI: 10.1016/j.ddmod.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease.
Collapse
|
57
|
Ziv O, Morales E, Song YK, Peng X, Odening KE, Buxton AE, Karma A, Koren G, Choi BR. Origin of complex behaviour of spatially discordant alternans in a transgenic rabbit model of type 2 long QT syndrome. J Physiol 2009; 587:4661-80. [PMID: 19675070 DOI: 10.1113/jphysiol.2009.175018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Enhanced dispersion of repolarization has been proposed as an important mechanism in long QT related arrhythmias. Dispersion can be dynamic and can be augmented with the occurrence of spatially out-of-phase action potential duration (APD) alternans (discordant alternans; DA). We investigated the role of tissue heterogeneity in generating DA using a novel transgenic rabbit model of type 2 long QT syndrome (LQT2). Littermate control (LMC) and LQT2 rabbit hearts (n = 5 for each) were retrogradely perfused and action potentials were mapped from the epicardial surface using di-4-ANEPPS and a high speed CMOS camera. Spatial dispersion (Delta APD and Delta slope of APD restitution) were both increased in LQT2 compared to LMC (Delta APD: 34 +/- 7 ms vs. 23 +/- 6 ms; Delta slope: 1.14 +/- 0.23 vs. 0.59 +/- 0.19). Onset of DA under a ramp stimulation protocol was seen at longer pacing cycle length (CL) in LQT2 compared to LMC hearts (206 +/- 24 ms vs. 156 +/- 5 ms). Nodal lines between regions with APD alternans out of phase from each other were correlated with conduction velocity (CV) alternation in LMC but not in LQT2 hearts. In LQT2 hearts, larger APD dispersion was associated with onset of DA at longer pacing CL. At shorter CLs, closer to ventricular fibrillation induction (VF), nodal lines in LQT2 (n = 2 out of 5) showed persistent complex beat-to-beat changes in nodal line formation of DA associated with competing contribution from CV restitution and tissue spatial heterogeneity, increasing vulnerability to conduction block. In conclusion, tissue heterogeneity plays a significant role in providing substrate for ventricular arrhythmia in LQT2 rabbits by facilitating DA onset and contributing to unstable nodal lines prone to reentry formation.
Collapse
Affiliation(s)
- Ohad Ziv
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Plank G, Burton RAB, Hales P, Bishop M, Mansoori T, Bernabeu MO, Garny A, Prassl AJ, Bollensdorff C, Mason F, Mahmood F, Rodriguez B, Grau V, Schneider JE, Gavaghan D, Kohl P. Generation of histo-anatomically representative models of the individual heart: tools and application. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:2257-92. [PMID: 19414455 PMCID: PMC2881535 DOI: 10.1098/rsta.2009.0056] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper presents methods to build histo-anatomically detailed individualized cardiac models. The models are based on high-resolution three-dimensional anatomical and/or diffusion tensor magnetic resonance images, combined with serial histological sectioning data, and are used to investigate individualized cardiac function. The current state of the art is reviewed, and its limitations are discussed. We assess the challenges associated with the generation of histo-anatomically representative individualized in silico models of the heart. The entire processing pipeline including image acquisition, image processing, mesh generation, model set-up and execution of computer simulations, and the underlying methods are described. The multifaceted challenges associated with these goals are highlighted, suitable solutions are proposed, and an important application of developed high-resolution structure-function models in elucidating the effect of individual structural heterogeneity upon wavefront dynamics is demonstrated.
Collapse
Affiliation(s)
- Gernot Plank
- Computational Biology Group, University of Oxford, Oxford OX1 2JD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, Trayanova NA. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol 2008; 295:H1626-33. [PMID: 18708441 DOI: 10.1152/ajpheart.00706.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
Collapse
Affiliation(s)
- M M Maleckar
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Roth B. Photon Density Measured Over a Cut Surface: Implications for Optical Mapping of the Heart. IEEE Trans Biomed Eng 2008; 55:2102-4. [DOI: 10.1109/tbme.2008.925293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Calculation of optical signal using three-dimensional bidomain/diffusion model reveals distortion of the transmembrane potential. Biophys J 2008; 95:2097-102. [PMID: 18487289 DOI: 10.1529/biophysj.107.127852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical mapping experiments allow investigators to view the effects of electrical currents on the transmembrane potential, V(m), as a shock is applied to the heart. One important consideration is whether the optical signal accurately represents V(m). We have combined the bidomain equations along with the photon diffusion equation to study the excitation and emission of photons during optical mapping of cardiac tissue. Our results show that this bidomain/diffusion model predicts an optical signal that is much smaller than V(m) near a stimulating electrode, a result consistent with experimental observations. Yet, this model, which incorporates the effect of lateral averaging, also reveals an optical signal that overestimates V(m) at distances >1 mm away from the electrode. Although V(m) falls off with distance r from the electrode as exp(-r/lambda)/r, the optical signal decays as a simple exponential, exp(-r/lambda). Moreover, regions of hyperpolarization adjacent to a cathode are emphasized in the optical signal compared to the region of depolarization under the cathode. Imaging methods utilizing optical mapping techniques will need to account for these distortions to accurately reconstruct V(m).
Collapse
|
62
|
Li W, Gurev V, McCulloch AD, Trayanova NA. The role of mechanoelectric feedback in vulnerability to electric shock. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:461-78. [PMID: 18374394 DOI: 10.1016/j.pbiomolbio.2008.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Experimental and clinical studies have shown that ventricular dilatation is associated with increased arrhythmogenesis and elevated defibrillation threshold; however, the underlying mechanisms remain poorly understood. The goal of the present study was to test the hypothesis that (1) stretch-activated channel (SAC) recruitment and (2) geometrical deformations in organ shape and fiber architecture lead to increased arrhythmogenesis by electric shocks following acute ventricular dilatation. To elucidate the contribution of these two factors, the study employed, for the first time, a combined electro-mechanical simulation approach. Acute dilatation was simulated in a model of rabbit ventricular mechanics by raising the LV end-diastolic pressure from 0.6 (control) to 4.2 kPa (dilated). The output of the mechanics model was used in the electrophysiological model. Vulnerability to shocks was examined in the control, the dilated ventricles, and in the dilated ventricles that also incorporated currents through SAC as a function of local strain, by constructing vulnerability grids. Results showed that dilatation-induced deformation alone decreased upper limit of vulnerability (ULV) slightly and did not result in increased vulnerability. With SAC recruitment in the dilated ventricles, the number of shock-induced arrhythmia episodes increased by 37% (from 41 to 56) and the lower limit of vulnerability (LLV) decreased from 9 to 7 V/cm, while ULV did not change. The heterogeneous activation of SAC caused by the heterogeneous fiber strain in the ventricular walls was the main reason for increased vulnerability to electric shocks since it caused dispersion of electrophysiological properties in the tissue, resulting in postshock unidirectional block and establishment of reentry.
Collapse
Affiliation(s)
- Weihui Li
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | | | | | | |
Collapse
|
63
|
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys J 2007; 94:1904-15. [PMID: 17993491 DOI: 10.1529/biophysj.107.121343] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While defibrillation is the only means for prevention of sudden cardiac death, key aspects of the process, such as the intramural virtual electrodes (VEs), remain controversial. Experimental studies had attempted to assess intramural VEs by using wedge preparations and recording activity from the cut surface; however, applicability of this approach remains unclear. These studies found, surprisingly, that for strong shocks, the entire cut surface was negatively polarized, regardless of boundary conditions. The goal of this study is to examine, by means of bidomain simulations, whether VEs on the cut surface represent a good approximation to VEs in depth of the intact wall. Furthermore, we aim to explore mechanisms that could give rise to negative polarization on the cut surface. A model of wedge preparation was used, in which fiber orientation could be changed, and where the cut surface was subjected to permeable and impermeable boundary conditions. Small-scale mechanisms for polarization were also considered. To determine whether any distortions in the recorded VEs arise from averaging during optical mapping, a model of fluorescent recording was employed. The results indicate that, when an applied field is spatially uniform and impermeable boundary conditions are enforced, regardless of the fiber orientation VEs on the cut surface faithfully represent those intramurally, provided tissue properties are not altered by dissection. Results also demonstrate that VEs are sensitive to the conductive layer thickness above the cut surface. Finally, averaging during fluorescent recordings results in large negative VEs on the cut surface, but these do not arise from small-scale heterogeneities.
Collapse
|