51
|
Gálvez J, Correa Aguirre JP, Hidalgo Salazar MA, Vera Mondragón B, Wagner E, Caicedo C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers (Basel) 2020; 12:E2111. [PMID: 32948042 PMCID: PMC7570249 DOI: 10.3390/polym12092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
One of the critical processing parameters-the speed of the extrusion process for plasticized poly (lactic acid) (PLA)-was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10-30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.
Collapse
Affiliation(s)
- Jaime Gálvez
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Juan P. Correa Aguirre
- Research Group for Manufacturing Technologies (GITEM), Universidad Autónoma de Occidente, Cali 760035, Colombia; (J.P.C.A.); (M.A.H.S.)
| | - Miguel A. Hidalgo Salazar
- Research Group for Manufacturing Technologies (GITEM), Universidad Autónoma de Occidente, Cali 760035, Colombia; (J.P.C.A.); (M.A.H.S.)
| | - Bairo Vera Mondragón
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Elizabeth Wagner
- Grupo de Investigación en Desarrollo de Materiales y Productos—GIDEMP, Centro Nacional de Asistencia Técnica a la Industria—ASTIN, SENA, Calle 52 No 2bis 15, Cali 760035, Colombia; (J.G.); (B.V.M.); (E.W.)
| | - Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 No. 62-00, Cali 760035, Colombia
| |
Collapse
|
52
|
|
53
|
Poly( l-Lactic Acid)/Pine Wood Bio-Based Composites. MATERIALS 2020; 13:ma13173776. [PMID: 32859082 PMCID: PMC7503300 DOI: 10.3390/ma13173776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer for PLLA/wood composites. Pine wood particles dispersed within PLLA act as nucleating agents able to start the growth of PLLA crystals, resulting in a faster crystallization rate and increased crystal fraction. Moreover, the composites have a slightly lower thermal stability compared to PLLA, proportional to filler content, due to the lower thermal stability of wood. Molecular dynamics was investigated using the solid-state 1H NMR technique, which revealed restrictions in the mobility of polymer chains upon the addition of wood, as well as enhanced interfacial adhesion between the filler and matrix in the composites compatibilized with APE. The enhanced interfacial adhesion in silane-treated composites was also proved by scanning electron microscopy and resulted in slightly improved deformability and impact resistance of the composites.
Collapse
|
54
|
Kolbuk D, Jeznach O, Wrzecionek M, Gadomska-Gajadhur A. Poly(Glycerol Succinate) as an Eco-Friendly Component of PLLA and PLCL Fibres towards Medical Applications. Polymers (Basel) 2020; 12:E1731. [PMID: 32756398 PMCID: PMC7464260 DOI: 10.3390/polym12081731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres.
Collapse
Affiliation(s)
- Dorota Kolbuk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Oliwia Jeznach
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Michał Wrzecionek
- Faculty of Chemistry of Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland;
| | | |
Collapse
|
55
|
Barletta M, Aversa C, Puopolo M, Vesco S. Ultra‐flexible
PLA
‐based blends for the manufacturing of biodegradable tamper‐evident screw caps by injection molding. J Appl Polym Sci 2020. [DOI: 10.1002/app.49428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Clizia Aversa
- Dipartimento di Ingegneria dell'ImpresaUniversità degli Studi di Roma Tor Vergata Rome Italy
| | - Michela Puopolo
- Dipartimento di IngegneriaUniversità degli Studi Roma Tre Rome Italy
| | - Silvia Vesco
- Dipartimento di Ingegneria dell'ImpresaUniversità degli Studi di Roma Tor Vergata Rome Italy
| |
Collapse
|
56
|
Safandowska M, Rozanski A, Galeski A. Plasticization of Polylactide after Solidification: An Effectiveness and Utilization for Correct Interpretation of Thermal Properties. Polymers (Basel) 2020; 12:polym12030561. [PMID: 32143346 PMCID: PMC7182837 DOI: 10.3390/polym12030561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Polylactide/triethyl citrate (PLA/TEC) systems were prepared in two ways by introducing TEC to solidified polymer matrix (SS) and by blending in a molten state (MS) to investigate the effectiveness of the plasticization process after solidification of polylactide. The plasticization processes, independently of way of introducing the TEC into PLA matrix, leads to systems characterized by similar stability, morphology and properties. Some differences in mechanical properties between MS and SS systems result primarily from the difference in the degree of crystallinity/crystal thickness of the PLA matrix itself. Based on the presented results, it was concluded that the plasticization process after solidification of polylactide is an alternative to the conventional method of modification-blending in a molten state. Then, this new approach to plasticization process was utilized for interpretation of thermal properties of PLA and PLA/TEC systems. It turned out that double melting peak observed at DSC thermograms does not result from the melting of a double population of crystals with different lamellar thickness, or the melting of both the α' and α crystalline phase (commonly used explanations in literature), but is associated with the improvement of perfection of crystalline structure of PLA during heating process.
Collapse
Affiliation(s)
- Marta Safandowska
- Correspondence: (M.S.); (A.R.); Tel.: +48-42-680-3236 (M.S.); +48-42-680-3228 (A.R.)
| | - Artur Rozanski
- Correspondence: (M.S.); (A.R.); Tel.: +48-42-680-3236 (M.S.); +48-42-680-3228 (A.R.)
| | | |
Collapse
|
57
|
Mazzotta MG, Putnam AA, North MA, Wilker JJ. Weak Bonds in a Biomimetic Adhesive Enhance Toughness and Performance. J Am Chem Soc 2020; 142:4762-4768. [PMID: 32069400 DOI: 10.1021/jacs.9b13356] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael G. Mazzotta
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Amelia A. Putnam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Michael A. North
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
58
|
Lascano D, Moraga G, Ivorra-Martinez J, Rojas-Lema S, Torres-Giner S, Balart R, Boronat T, Quiles-Carrillo L. Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers (Basel) 2019; 11:E2099. [PMID: 31847359 PMCID: PMC6960981 DOI: 10.3390/polym11122099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5-20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs as an impact modifier for PLA, showing a percentage increase in the impact strength of approximately 171% for the injection-molded pieces containing 15 wt% OLA. A slight plasticization was observed by the decrease of the glass transition temperature (Tg) of PLA of up to 12.5 °C. The OLA addition also promoted a reduction of the cold crystallization temperature (Tcc) of more than 10 °C due to an increased motion of the biopolymer chains and the potential nucleating effect of the short oligomer chains. Moreover, the shape memory behavior of the PLA samples was characterized by flexural tests with different deformation angles, that is, 15°, 30°, 60°, and 90°. The obtained results confirmed the extraordinary effect of OLA on the shape memory recovery (Rr) of PLA, which increased linearly as the OLA loading increased. In particular, the OLA-containing PLA samples were able to successfully recover over 95% of their original shape for low deformation angles, while they still reached nearly 70% of recovery for the highest angles. Therefore, the present OLA can be successfully used as a novel additive to improve the toughness and shape memory behavior of compostable packaging articles based on PLA in the new frame of the Circular Economy.
Collapse
Affiliation(s)
- Diego Lascano
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
- Escuela Politécnica Nacional, 17-01-2759 Quito, Ecuador
| | - Giovanni Moraga
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Sandra Rojas-Lema
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
- Escuela Politécnica Nacional, 17-01-2759 Quito, Ecuador
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Rafael Balart
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Teodomiro Boronat
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| |
Collapse
|
59
|
Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The main goal of this study is to prepare antibacterial poly(lactic acid) (PLA) containing cinnamaldehyde and geraniol and to evaluate the antibacterial activity and assess the changes of physical properties of the PLA films. Cinnamaldehyde- and geraniol-incorporated (10%, 20%, 30%, and 50% v/w) PLA films were prepared via solution-casting. While preparing these films, plasticizers were not added to the matrix. Antibacterial activities of these films against Escherichia coli and Staphylococcus aureus were investigated by the disk diffusion method. Thermal degradation characteristics were analyzed via thermogravimetric analysis (TGA), glass transition, crystallization, and melting temperatures, and enthalpies of the films were determined from differential scanning calorimetry (DSC) scans. Tensile strength and elongation-at-break values of neat PLA and antibacterial-compound-containing films were evaluated and compared after the mechanical tests. Moreover, the changes in the polymer morphology were observed by SEM analysis, and opacity of the films was determined by UV-vis spectroscopy. Our results showed that both compounds provided antibacterial effect to the PLA, with cinnamaldehyde being more effective than geraniol. Moreover, plasticization effects of the compounds were confirmed by DSC analysis.
Collapse
|
60
|
Samthong C, Kunanusont N, Deetuam C, Wongkhan T, Supannasud T, Somwangthanaroj A. Effect of acrylonitrile content of acrylonitrile butadiene rubber on mechanical and thermal properties of dynamically vulcanized poly(lactic acid) blends. POLYM INT 2019. [DOI: 10.1002/pi.5912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chavakorn Samthong
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Nappaphan Kunanusont
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Chutimar Deetuam
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Tanchanok Wongkhan
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Thanapat Supannasud
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
- Special Task Force of Activating Research (STAR) in Novel Technology for Food Packaging and Control of Shelf LifeChulalongkorn University Bangkok Thailand
| |
Collapse
|
61
|
Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers. Int J Biol Macromol 2019; 153:1165-1175. [PMID: 31756463 DOI: 10.1016/j.ijbiomac.2019.10.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 11/24/2022]
Abstract
The properties of PLA films intended for packaging applications have been modulated by using bio-based platicizers and naturally obtained fillers. Triethyl citrate (TEC) and glycerol triacetate (GTA) have been used as platicizers and halloysite nanotubes (HNT) and chitosan have been used as fillers. The addition of 10 wt% TEC, 10 wt% GTA and 3 wt% HNT improves the ductility of PLA films, however, reduces the tensile modulus and tensile strength. Addition of chitosan (1 wt%), on the other hand, acts as a good reinforcing filler and improves the tensile strength and tensile modulus. PLA-HNT-chitosan film show comparable tensile strength, tensile modulus and ~12 times higher elongation at break compared to pure PLA. Besides, PLA-HNT-chitosan film demonstrates very good barrier properties against moisture and ultraviolet (UV) rays. Additionally, its antibacterial efficacy against E. coli and S. aureus are found to be around 80% and 70%, respectively. The study demonstrates the complementary effects of HNT and chitosan to modulate the properties of PLA film and indicates that the PLA-HNT-chitosan film can emerge as a very potent material for packaging applications.
Collapse
|
62
|
Gigante V, Coltelli MB, Vannozzi A, Panariello L, Fusco A, Trombi L, Donnarumma G, Danti S, Lazzeri A. Flat Die Extruded Biocompatible Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS) Based Films. Polymers (Basel) 2019; 11:E1857. [PMID: 31717937 PMCID: PMC6918134 DOI: 10.3390/polym11111857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Biodegradable polymers are promising materials for films and sheets used in many widely diffused applications like packaging, personal care products and sanitary products, where the synergy of high biocompatibility and reduced environmental impact can be particularly significant. Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films, showing high cytocompatibility and improved flexibility than pure PLA, were prepared by laboratory extrusion and their processability was controlled by the use of a few percent of a commercial melt strength enhancer, based on acrylic copolymers and micro-calcium carbonate. The melt strength enhancer was also found effective in reducing the crystallinity of the films. The process was upscaled by producing flat die extruded films in which elongation at break and tear resistance were improved than pure PLA. The in vitro biocompatibility, investigated through the contact of flat die extruded films with cells, namely, keratinocytes and mesenchymal stromal cells, resulted improved with respect to low density polyethylene (LDPE). Moreover, the PLA-based materials were able to affect immunomodulatory behavior of cells and showed a slight indirect anti-microbial effect. These properties could be exploited in several applications, where the contact with skin and body is relevant.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
| | - Alessandra Fusco
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luisa Trombi
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
- OTOLAB, Azienda Ospedaliero-Universitaria Pisana (AOUP), 56122 Pisa, Italy
| | - Giovanna Donnarumma
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
- OTOLAB, Azienda Ospedaliero-Universitaria Pisana (AOUP), 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (A.V.); (L.P.); (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (A.F.); (L.T.); (G.D.)
| |
Collapse
|
63
|
Carlier E, Marquette S, Peerboom C, Denis L, Benali S, Raquez JM, Amighi K, Goole J. Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions. Int J Pharm 2019; 565:367-377. [DOI: 10.1016/j.ijpharm.2019.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
64
|
Crystallization of triethyl‐citrate‐plasticized poly(lactic acid) induced by chitin nanocrystals. J Appl Polym Sci 2019. [DOI: 10.1002/app.47936] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
65
|
Fernández-Ronco MP, Hufenus R, Heuberger M. Effect of pressurized CO2 and N2 on the rheology of PLA. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
66
|
Affiliation(s)
- Nur Fazreen Alias
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Hanafi Ismail
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
67
|
Quiles-Carrillo L, Montanes N, Pineiro F, Jorda-Vilaplana A, Torres-Giner S. Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2138. [PMID: 30380751 PMCID: PMC6266747 DOI: 10.3390/ma11112138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
The present study describes the preparation and characterization of binary and ternary blends based on polylactide (PLA) with poly(ε-caprolactone) (PCL) and thermoplastic starch (TPS) to develop fully compostable plastics with improved ductility and toughness. To this end, PLA was first melt-mixed in a co-rotating twin-screw extruder with up to 40 wt % of different PCL and TPS combinations and then shaped into pieces by injection molding. The mechanical, thermal, and thermomechanical properties of the resultant binary and ternary blend pieces were analyzed and related to their composition. Although the biopolymer blends were immiscible, the addition of both PCL and TPS remarkably increased the flexibility and impact strength of PLA while it slightly reduced its mechanical strength. The most balanced mechanical performance was achieved for the ternary blend pieces that combined high PCL contents with low amounts of TPS, suggesting a main phase change from PLA/TPS (comparatively rigid) to PLA/PCL (comparatively flexible). The PLA-based blends presented an "island-and-sea" morphology in which the TPS phase contributed to the fine dispersion of PCL as micro-sized spherical domains that acted as a rubber-like phase with the capacity to improve toughness. In addition, the here-prepared ternary blend pieces presented slightly higher thermal stability and lower thermomechanical stiffness than the neat PLA pieces. Finally, all biopolymer pieces fully disintegrated in a controlled compost soil after 28 days. Therefore, the inherently low ductility and toughness of PLA can be successfully improved by melt blending with PCL and TPS, resulting in compostable plastic materials with a great potential in, for instance, rigid packaging applications.
Collapse
Affiliation(s)
- Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Nestor Montanes
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Fede Pineiro
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Amparo Jorda-Vilaplana
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
| | - Sergio Torres-Giner
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain.
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| |
Collapse
|
68
|
Mohamed El-Hadi A, Alamri HR. The New Generation from Biomembrane with Green Technologies for Wastewater Treatment. Polymers (Basel) 2018; 10:E1174. [PMID: 30961099 PMCID: PMC6403578 DOI: 10.3390/polym10101174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
A biopolymer of polylactic acid (PLLA)/polypropylene carbonate (PPC)/poly (3-hydroxybutrate) (PHB)/triethyl citrate (TEC) blends was prepared by the solution-casting method at different proportions. The thermal characteristics were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). PHB and TEC were added to improve the interfacial adhesion, crystallization behavior, and mechanical properties of the immiscible blend from PLLA and PPC (20%). The addition of more than 20% of PPC as an amorphous part hindered the crystallization of PLLA. PPC, PHB, and TEC also interacted with the PLLA matrix, which reduced the glass transition temperature (Tg), the cold crystallization temperature (Tcc), and the melting point (Tm) to about 53, 57 and 15 °C, respectively. The Tg shifted from 60 to 7 °C; therefore, the elongation at break improved from 6% (pure PLLA) to 285% (PLLA blends). In this article, biomembranes of PLLA with additives were developed and made by an electrospinning process. The new generation from biopolymer membranes can be used to absorb suspended pollutants in the water, which helps in the purification of drinking water in the household.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Hadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Al-Abidiyya, P.O. Box 13174, Makkah 21955, Saudi Arabia.
- Department of Basic Science, Higher Institute of Engineering and Technology, El Arish, North Sinai 9004, Egypt.
| | - Hatem Rashad Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|
69
|
Efficient polymeric phosphorus flame retardant: flame retardancy, thermal property, and physical property on polylactide. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2558-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Garcia-Campo MJ, Quiles-Carrillo L, Sanchez-Nacher L, Balart R, Montanes N. High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Kodal M, Sirin H, Ozkoc G. Long- and short-term stability of plasticized poly(lactic acid): effects of plasticizers type on thermal, mechanical and morphological properties. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2388-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
Rynkowska E, Fatyeyeva K, Kujawa J, Dzieszkowski K, Wolan A, Kujawski W. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes. Polymers (Basel) 2018; 10:polym10010086. [PMID: 30966119 PMCID: PMC6415109 DOI: 10.3390/polym10010086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL) (3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-methyl-1H-imidazol-3-ium) was used to prepare novel dense cellulose acetate propionate (CAP) based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC) and acetyl tributyl citrate (ATBC). Thermogravimetric analysis (TGA) testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water).
Collapse
Affiliation(s)
- Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Synthex Technologies Sp. z o.o., 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| |
Collapse
|
73
|
Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. MATERIALS 2017; 10:ma10111339. [PMID: 29165359 PMCID: PMC5706286 DOI: 10.3390/ma10111339] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.
Collapse
|
74
|
Celebi H, Gunes E. Combined effect of a plasticizer and carvacrol and thymol on the mechanical, thermal, morphological properties of poly(lactic acid). J Appl Polym Sci 2017. [DOI: 10.1002/app.45895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hande Celebi
- Department of Chemical Engineering; Anadolu University; Eskisehir 26555 Turkey
| | - Elif Gunes
- Department of Chemical Engineering; Anadolu University; Eskisehir 26555 Turkey
| |
Collapse
|
75
|
Arrieta MP, Samper MD, Aldas M, López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1008. [PMID: 28850102 PMCID: PMC5615663 DOI: 10.3390/ma10091008] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.
Collapse
Affiliation(s)
- Marina Patricia Arrieta
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - María Dolores Samper
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
| | - Miguel Aldas
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador.
| | - Juan López
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain.
| |
Collapse
|
76
|
Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition. Processes (Basel) 2017. [DOI: 10.3390/pr5030043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|