51
|
Kulikova E, Boreyko A, Bulanova T, Ježková L, Zadneprianetc M, Smirnova E. Visualization of complex DNA damage along accelerated ions tracks. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817706002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.
Collapse
|
52
|
Efficient repair of DNA double strand breaks in individuals from high level natural radiation areas of Kerala coast, south-west India. Mutat Res 2017; 806:39-50. [PMID: 28963924 DOI: 10.1016/j.mrfmmm.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
High level natural radiation areas (HLNRA) of Kerala coastal strip (55km long and 0.5km wide) in southwest India exhibit wide variations in the level of background dose (< 1.0-45.0mGy/year) due to thorium deposits in the beach sand. The areas with ≤1.5mGy/year are considered as normal level natural radiation area (NLNRA), whereas areas with >1.5mGy/year are HLNRA. Individuals belonging to HLNRA were stratified into two groups, Low dose group (LDG: 1.51-5.0mGy/year) and high dose group (HDG: >5.0mGy/year). The mean annual dose received by the individuals from NLNRA, LDG and HDG was 1.3±0.1, 2.7±0.9 and 9.4±2.3mGy/year, respectively. Induction and repair of DNA double strand breaks (DSBs) in terms of gamma-H2AX positive cells were analysed in peripheral blood mononuclear cells (PBMCs) using flow cytometry. Induction of DSBs was studied at low (0.25Gy) and high challenge doses (1.0 and 2.0Gy) of gamma radiation in 78 individuals {NLNRA, N=23; HLNRA (LDG, N=21 and HDG, N=34)}. Repair kinetics of DSBs were evaluated in PBMCs of 30 individuals belonging to NLNRA (N=8), LDG (N=7) and HDG (N=15) at low (0.25Gy) and high doses (2.0Gy) of gamma radiation. Transcription profile of DNA damage response (DDR) and DSB repair genes involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways was analysed after a challenge dose of 2.0Gy in PBMCs of NLNRA (N=10) and HDG, HLNRA (N=10) group. Our results revealed significantly lower induction and efficient repair of DSBs in HLNRA groups as compared to NLNRA. Transcription profile of DCLRE1C, XRCC4, NBS1 and CDK2 showed significant up-regulation (p≤0.05) in HDG at a challenge dose of 2.0Gy indicating active involvement of DDR and DSB repair pathways. In conclusion, lower induction and efficient repair of DNA DSBs in HLNRA groups is suggestive of an in vivo radio-adaptive response due to priming effect of chronic low dose radiation prevailing in this area.
Collapse
|
53
|
Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA, Galderisi U. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis. J Cell Biochem 2017; 118:2993-3002. [PMID: 28252222 DOI: 10.1002/jcb.25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Esposito
- Technology and Health Department, National Institute of Health, Rome, Italy
- National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Giovanni Galano
- PSI Napoli Est - Laboratory UO, ASL Napoli 1 Centro, Naples, Italy
| | - Roberto De Rosa
- PSI Napoli Est - Radiology UO, ASL Napoli 1 Centro, Naples, Italy
| | - Pasquale Anello
- Technology and Health Department, National Institute of Health, Rome, Italy
| | - Gianfranco Peluso
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Maria Antonella Tabocchini
- Technology and Health Department, National Institute of Health, Rome, Italy
- National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Mackay RI, Kirkby KJ, Merchant MJ. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models. Radiat Res 2017; 188:690-703. [PMID: 28792846 DOI: 10.1667/rr14755.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Monte Carlo based simulation has proven useful in investigating the effect of proton-induced DNA damage and the processes through which this damage occurs. Clustering of ionizations within a small volume can be related to DNA damage through the principles of nanodosimetry. For simulation, it is standard to construct a small volume of water and determine spatial clusters. More recently, realistic DNA geometries have been used, tracking energy depositions within DNA backbone volumes. Traditionally a chromatin fiber is built within the simulation and identically replicated throughout a cell nucleus, representing the cell in interphase. However, the in vivo geometry of the chromatin fiber is still unknown within the literature, with many proposed models. In this work, the Geant4-DNA toolkit was used to build three chromatin models: the solenoid, zig-zag and cross-linked geometries. All fibers were built to the same chromatin density of 4.2 nucleosomes/11 nm. The fibers were then irradiated with protons (LET 5-80 keV/μm) or alpha particles (LET 63-226 keV/μm). Nanodosimetric parameters were scored for each fiber after each LET and used as a comparator among the models. Statistically significant differences were observed in the double-strand break backbone size distributions among the models, although nonsignificant differences were noted among the nanodosimetric parameters. From the data presented in this article, we conclude that selection of the solenoid, zig-zag or cross-linked chromatin model does not significantly affect the calculated nanodosimetric parameters. This allows for a simulation-based cell model to make use of any of these chromatin models for the scoring of direct ion-induced DNA damage.
Collapse
Affiliation(s)
- N T Henthorn
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - J W Warmenhoven
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - M Sotiropoulos
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - R I Mackay
- b Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; and
| | - K J Kirkby
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - M J Merchant
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
55
|
Werner E, Wang Y, Doetsch PW. A Single Exposure to Low- or High-LET Radiation Induces Persistent Genomic Damage in Mouse Epithelial Cells In Vitro and in Lung Tissue. Radiat Res 2017; 188:373-380. [PMID: 28753066 DOI: 10.1667/rr14685.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to low- and high-linear energy transfer (LET) radiation induce clustered damage in DNA that is difficult to repair. These lesions are manifested as DNA-associated foci positive for DNA repair proteins and have been shown to persist in vitro and in vivo for days in several cell types and tissues in response to low-LET radiation. Although in some experimental conditions these residual foci have been linked with genomic instability and chromosomal aberrations, it remains poorly understood what type of damage they represent. Because high-LET radiation induces complex DNA lesions more efficiently than low-LET radiation, we compared the efficacy of several heavy ions (oxygen, silicon and iron) in a range (17 , 70 and 175 keV/μm, respectively) of LET and X rays at a 1 Gy dose. Persistent genomic damage was measured by γ-H2AX-53BP1-positive residual foci and micronucleus levels during the first three days and up to a week after in vitro and in vivo irradiation in lung cells and tissue. We demonstrate that in an in vitro irradiated mouse bronchial epithelial cell line, the expression of residual foci is readily detectable at 24 h with levels declining in the following 72 h postirradiation, but still persisting elevated over background at day 7. At this time, foci numbers are low but significant and proportional to the dose and quality of the radiation. The expression of residual foci in vitro was mirrored by increased micronuclei generation measured in cytokinesis-blocked cells, indicating long-term, persistent effects of genomic damage in this cell type. We also tested the expression of residual foci in lung tissue of C57BL/6 mice that received whole-body X-ray or heavy-ion irradiation. We found that at day 7 postirradiation, Clara/Club cells, but not pro-SPC-positive pneumocytes, contained a subpopulation of cells expressing γ-H2AX-53BP1-positive foci in a radiation quality-dependent manner. These findings suggest that in vivo persistent DNA repair foci reflect the initial genotoxic damage induced by radiation and a differential vulnerability among cells in the lung.
Collapse
Affiliation(s)
- Erica Werner
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ya Wang
- b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Paul W Doetsch
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia.,c Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
56
|
Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017; 9:cancers9070091. [PMID: 28718816 PMCID: PMC5532627 DOI: 10.3390/cancers9070091] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Maria P Souli
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Asef Aziz
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Somaira Nowsheen
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khaled Aziz
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emmy Rogakou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, 11527 Athens, Greece.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
57
|
Streitmatter SW, Stewart RD, Jenkins PA, Jevremovic T. DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT). Phys Med Biol 2017; 62:6164-6184. [PMID: 28703119 DOI: 10.1088/1361-6560/aa772d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multi-scale Monte Carlo model is proposed to assess the dosimetric and biological impact of iodine-based contrast agents commonly used in computed tomography. As presented, the model integrates the general purpose MCNP6 code system for larger-scale radiation transport and dose assessment with the Monte Carlo damage simulation to determine the sub-cellular characteristics and spatial distribution of initial DNA damage. The repair-misrepair-fixation model is then used to relate DNA double strand break (DSB) induction to reproductive cell death. Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft characteristic k-shell x-rays (0.25-4.55 keV) up to orthovoltage (200-500 kVp) x-rays indicate that the relative biological effectiveness (RBE) for DSB induction is within a few percent of the RBE for cell survival. Because of the very short range of secondary electrons produced by low energy x-ray interactions with contrast agents, the concentration and subcellular distribution of iodine within and near cellular targets have a significant impact on the estimated absorbed dose and number of DSB produced in the cell nucleus. For some plausible models of the cell-level distribution of contrast agent, the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB induction of 1.22-1.40 for a 5-10 mg ml-1 iodine concentration in blood compared to an RWD increase of 1.07 ± 0.19 from a recent clinical trial. The modeled RWD of 2.58 ± 0.03 is also in good agreement with the measured RWD of 2.3 ± 0.5 for an iodine concentration of 50 mg ml-1 relative to no iodine. The good agreement between modeled and measured DSB and cell survival estimates provides some confidence that the presented model can be used to accurately assess biological dose for other concentrations of the same or different contrast agents.
Collapse
Affiliation(s)
- Seth W Streitmatter
- Nuclear Engineering Program, The University of Utah, 50 S. Central Campus Drive, 1206 MEB, Salt Lake City, UT 84112, United States of America. Department of Radiology and Imaging Sciences, University of Utah Health, 30 North 1900 East #1A71, Salt Lake City, UT 84132, United States of America
| | | | | | | |
Collapse
|
58
|
Hojo H, Dohmae T, Hotta K, Kohno R, Motegi A, Yagishita A, Makinoshima H, Tsuchihara K, Akimoto T. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak. Radiat Oncol 2017; 12:111. [PMID: 28673358 PMCID: PMC5494883 DOI: 10.1186/s13014-017-0849-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Methods Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. Results In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. Conclusions The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines. Electronic supplementary material The online version of this article (doi:10.1186/s13014-017-0849-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takeshi Dohmae
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kenji Hotta
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Ryosuke Kohno
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1840 Old Spanish Trail, Houston, TX, 77054, USA
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Yagishita
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideki Makinoshima
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
59
|
Allen BJ. A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:369-376. [PMID: 28342027 DOI: 10.1007/s13246-017-0534-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
Abstract
The Ac225:Bi213 generator is the mainstay for preclinical and clinical studies of targeted alpha therapy for cancer. Both Ac225 (four alpha decays) and Bi213 (one alpha decay) are being used to label targeting vectors to form the alpha immunoconjugate for cancer therapy. This paper considers the radiobiological and economic aspects of Ac225 vs Bi213 as the preferred radioisotope for preclinical and clinical TAT. The in vitro and in vivo evidence and the role of DNA repair processes is examined. The maximum tolerance dose and therapeutic gain are endpoints for comparison. Ac225 has the higher therapeutic gain, when normalised to equal alpha production. However, the slow repair of double strand breaks reduces this advantage. Comparisons are made for the specific energy deposition in targeted and non-targeted cells, for endothelial cells by direct or indirect targeting, the need for sparing agents to save critical organs and cost considerations for preclinical and clinical trials and clinical use. Overall, Ac225 is found to have the better or equal performance to Bi213 at a much lower cost.
Collapse
Affiliation(s)
- Barry J Allen
- Faculty of Medicine, University Western Sydney, Sydney, NSW, Australia.
| |
Collapse
|
60
|
Lu T, Zhang Y, Wong M, Feiveson A, Gaza R, Stoffle N, Wang H, Wilson B, Rohde L, Stodieck L, Karouia F, Wu H. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:24-31. [PMID: 28212705 DOI: 10.1016/j.lssr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
Collapse
Affiliation(s)
- Tao Lu
- NASA Johnson Space Center, Houston, TX, USA; University of Houston Clear Lake, Houston, TX, USA
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | | | - Ramona Gaza
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Nicholas Stoffle
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Huichen Wang
- Prairie View A&M University, Prairie View, TX, USA
| | | | - Larry Rohde
- University of Houston Clear Lake, Houston, TX, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, CA, USA; University of California San Francisco, San Francisco, CA, USA
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, USA.
| |
Collapse
|
61
|
Bayart E, Pouzoulet F, Calmels L, Dadoun J, Allot F, Plagnard J, Ravanat JL, Bridier A, Denozière M, Bourhis J, Deutsch E. Enhancement of IUdR Radiosensitization by Low-Energy Photons Results from Increased and Persistent DNA Damage. PLoS One 2017; 12:e0168395. [PMID: 28045991 PMCID: PMC5207426 DOI: 10.1371/journal.pone.0168395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023] Open
Abstract
Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2’-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.
Collapse
Affiliation(s)
- Emilie Bayart
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- * E-mail:
| | - Frédéric Pouzoulet
- Plateforme de Radiothérapie Expérimentale, Département de Recherche Translationnelle, Institut Curie, Orsay, France
| | - Lucie Calmels
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jonathan Dadoun
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Fabien Allot
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Johann Plagnard
- CEA, DRT/LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, Grenoble, France; CEA, INAC-SCIB, Grenoble, France
| | - André Bridier
- Département de Radiothérapie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marc Denozière
- CEA, DRT/LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette cedex, France
| | - Jean Bourhis
- Department of Oncology, Radiation Oncology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Eric Deutsch
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Faculté de médecine du Kremlin Bicêtre, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
62
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
63
|
|
64
|
Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, Fragkoulis GI, Hellweg CE, Martin OA, Emfietzoglou D, Hatzi VI, Terzoudi GI, Iliakis G, Georgakilas AG. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res 2016; 50:S64-S78. [PMID: 27593437 DOI: 10.1080/10715762.2016.1232484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5-16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Vladimir Nikolov
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Ifigeneia V Mavragani
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Emil Mladenov
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Anastasios Mangelis
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Danae A Laskaratou
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Georgios I Fragkoulis
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Christine E Hellweg
- c Radiation Biology Department , German Aerospace Center (DLR), Institute of Aerospace Medicine , Linder Höhe , Köln , Germany
| | - Olga A Martin
- d Research Division , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia.,e Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , VIC , Australia.,f Division of Radiation Oncology and Cancer Imaging , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia
| | - Dimitris Emfietzoglou
- g Medical Physics Laboratory , Medical School, University of Ioannina , Ioannina , Greece
| | - Vasiliki I Hatzi
- h Laboratory of Health Physics , Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos" , Athens , Greece
| | - Georgia I Terzoudi
- h Laboratory of Health Physics , Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos" , Athens , Greece
| | - George Iliakis
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Alexandros G Georgakilas
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| |
Collapse
|
65
|
Low doses of X-rays induce prolonged and ATM-independent persistence of γH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2016; 6:27275-87. [PMID: 26314960 PMCID: PMC4694989 DOI: 10.18632/oncotarget.4739] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022] Open
Abstract
Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AX (γH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5–60 min), with a maximum induction observed at 30–60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40–60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20–80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent.
Collapse
|
66
|
Weissmann R, Kacprowski T, Peper M, Esche J, Jensen LR, van Diepen L, Port M, Kuss AW, Scherthan H. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts. HEALTH PHYSICS 2016; 111:75-84. [PMID: 27356049 PMCID: PMC4936435 DOI: 10.1097/hp.0000000000000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 06/06/2023]
Abstract
Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.
Collapse
Affiliation(s)
- Robert Weissmann
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Tim Kacprowski
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Michel Peper
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Jennifer Esche
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Lars R. Jensen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Laura van Diepen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Matthias Port
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Andreas W. Kuss
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Harry Scherthan
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| |
Collapse
|
67
|
Runge R, Oehme L, Kotzerke J, Freudenberg R. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters (223)Ra, (188)Re, and (99m)Tc. EJNMMI Res 2016; 6:48. [PMID: 27259575 PMCID: PMC4893047 DOI: 10.1186/s13550-016-0203-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
Background DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by 223Ra compared to 188Re and 99mTc modulated by the radical scavenger dimethyl sulfoxide (DMSO). Methods Radioactive solutions of 223Ra, 188Re, or 99mTc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. Results Exposure to 120 Gy of 223Ra, 188Re, or 99mTc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy 223Ra and 500 Gy 188Re or 99mTc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter 223Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with 223Ra, 188Re, and 99mTc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for 223Ra, 188Re, and 99mTc, respectively. Conclusions For 223Ra, as well as for 188Re and 99mTc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0203-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roswitha Runge
- Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany.
| | - Liane Oehme
- Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307, Dresden, Germany
| |
Collapse
|
68
|
Jain V, Kumar PRV, Koya PKM, Jaikrishan G, Das B. Lack of increased DNA double-strand breaks in peripheral blood mononuclear cells of individuals from high level natural radiation areas of Kerala coast in India. Mutat Res 2016; 788:50-7. [PMID: 27063255 DOI: 10.1016/j.mrfmmm.2016.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/14/2016] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
The high level natural radiation area (HLNRA) of Kerala is a 55km long and 0.5km wide strip in south west coast of India. The level of background radiation in this area varies from <1.0mGy/year to 45.0mGy/year. It offers unique opportunity to study the effect of chronic low dose/low dose-rate radiation directly on human population. Spontaneous level of DNA double strand breaks (DSBs) was quantified in peripheral blood mononuclear cells of 91 random individuals from HLNRA (N=61, mean age: 36.1±7.43years) and normal level natural radiation area (NLNRA) (N=30, mean age: 35.5±6.35years) using gamma-H2AX as a marker. The mean annual dose received by NLNRA and HLNRA individuals was 1.28±0.086mGy/year and 8.28±4.96mGy/year, respectively. The spontaneous frequency of DSBs in terms of gamma-H2AX foci among NLNRA and HLNRA individuals were 0.095±0.009 and 0.084±0.004 per cell (P=0.22). The individuals from HLNRA were further classified as low dose group (LDG, 1.51-5.0mGy/year, mean dose: 2.63±0.76mGy/year) and high dose group (HDG, >5.0mGy/year, mean dose: 11.04±3.57mGy/year). The spontaneous frequency of gamma-H2AX foci per cell in NLNRA, LDG and HDG was observed to be 0.095±0.009, 0.096±0.008 and 0.078±0.004 respectively. Individuals belonging to HDG of HLNRA showed marginally lower frequency of DSBs as compared to NLNRA and LDG of HLNRA. This could be suggestive of either lower induction or better repair of DSBs in individuals from HDG of HLNRA. The present study indicated that 5.0mGy/year could be a possible threshold dose for DSB induction at chronic low-dose radiation exposure in vivo. However, further studies on DNA damage induction and repair kinetics are required to draw firm conclusions.
Collapse
Affiliation(s)
- Vinay Jain
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India
| | - P R Vivek Kumar
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - P K M Koya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G Jaikrishan
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| |
Collapse
|
69
|
Tang H, Chen L, Liu J, Shi J, Li Q, Wang T, Wu L, Zhan F, Bian P. Radioadaptive Response for Reproductive Cell Death Demonstrated in In Vivo Tissue Model of Caenorhabditis elegans. Radiat Res 2016; 185:402-10. [PMID: 27023260 DOI: 10.1667/rr14368.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans ( C. elegans ), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans , early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 + 75 Gy and 5 + 100 Gy at the time point of 14-16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2-4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans . This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans .
Collapse
Affiliation(s)
- Huangqi Tang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Liangwen Chen
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Jialu Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Jue Shi
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Qingqing Li
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Ting Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Furu Zhan
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| | - Po Bian
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China
| |
Collapse
|
70
|
Averbeck NB, Topsch J, Scholz M, Kraft-Weyrather W, Durante M, Taucher-Scholz G. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation. Front Oncol 2016; 6:28. [PMID: 26904506 PMCID: PMC4751252 DOI: 10.3389/fonc.2016.00028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed.
Collapse
Affiliation(s)
- Nicole B Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Jana Topsch
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Michael Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Wilma Kraft-Weyrather
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH , Darmstadt , Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
71
|
Shuryak I. Mechanistic Modeling of Dose and Dose Rate Dependences of Radiation-Induced DNA Double Strand Break Rejoining Kinetics in Saccharomyces cerevisiae. PLoS One 2016; 11:e0146407. [PMID: 26741137 PMCID: PMC4711806 DOI: 10.1371/journal.pone.0146407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Mechanistic modeling of DNA double strand break (DSB) rejoining is important for quantifying and medically exploiting radiation-induced cytotoxicity (e.g. in cancer radiotherapy). Most radiation-induced DSBs are quickly-rejoinable and are rejoined within the first 1–2 hours after irradiation. Others are slowly-rejoinable (persist for several hours), and yet others are essentially unrejoinable (persist for >24 hours). The dependences of DSB rejoining kinetics on radiation dose and dose rate remain incompletely understood. We hypothesize that the fraction of slowly-rejoinable and/or unrejoinable DSBs increases with increasing dose/dose rate. This radiation-dependent (RD) model was implemented using differential equations for three DSB classes: quickly-rejoinable, slowly-rejoinable and unrejoinable. Radiation converts quickly-rejoinable to slowly-rejoinable, and slowly-rejoinable to unrejoinable DSBs. We used large published data sets on DSB rejoining in yeast exposed to sparsely-ionizing (electrons and γ-rays, single or split-doses, high or low dose rates) and densely-ionizing (α-particles) radiation to compare the performances of the proposed RD formalism and the established two-lesion kinetic (TLK) model. These yeast DSB rejoining data were measured within the radiation dose range relevant for clonogenic cell survival, whereas in mammalian cells DSB rejoining is usually measured only at supra-lethal doses for technical reasons. The RD model described both sparsely-ionizing and densely-ionizing radiation data much better than the TLK model: by 217 and 14 sample-size-adjusted Akaike information criterion units, respectively. This occurred because: the RD (but not the TLK) model reproduced the observed upwardly-curving dose responses for slowly-rejoinable/unrejoinable DSBs at long times after irradiation; the RD model adequately described DSB yields at both high and low dose rates using one parameter set, whereas the TLK model overestimated low dose rate data. These results support the hypothesis that DSB rejoining is progressively impeded at increasing radiation doses/dose rates.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
72
|
Nie JH, Chen ZH, Shao CL, Pei WW, Zhang J, Zhang SY, Jiao Y, Tong J. Analysis of the miRNA-mRNA networks in malignant transformation BEAS-2B cells induced by alpha-particles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:427-435. [PMID: 27267825 DOI: 10.1080/15287394.2016.1176628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to determine the toxicity induced by irradiation with alpha-particles on malignant transformation of immortalized human bronchial epithelial cells (BEAS-2B) using miRNA-mRNA networks. The expression of BEAS-2B cells was determined by measuring colony formation, mtDNA, mitochondrial membrane potential (MMP), and ROS levels. Changes in BEAS-2B cell gene expression were observed and quantified using microarrays that included an increase in 157 mRNA and 20 miRNA expression and a decrease in 77 mRNA and 48 miRNA. Bioinformatic software was used to analyze these different mRNA and miRNA, which indicated that miR-107 and miR-494 play an important role in alpha-particles-mediated cellular malignant transformation processes. The pathways related to systemic lupus erythematosus, cytokine-cytokine receptor interaction, MAPK signaling pathway, regulation of actin cytoskeleton, and cell adhesion molecules (CAMs) were stimulated, while those of ribosome, transforming growth factor (TGF)-beta signaling pathway, and metabolic pathways were inhibited. Data suggest that miRNA and mRNA play a crucial role in alpha-particles-mediated malignant transformation processes. It is worth noting that three target genes associated with lung cancer were identified and upregulated PEG 10 (paternally expressed gene 10), ARHGAP26, and IRS1.
Collapse
Affiliation(s)
- Ji-Hua Nie
- a School of Public Health , Medical College of Soochow University , Suzhou , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
- c School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , China
| | - Zhi-Hai Chen
- a School of Public Health , Medical College of Soochow University , Suzhou , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Chun-Lin Shao
- e Institute of Radiation Medicine , Fudan University , Shanghai , China
| | - Wei-Wei Pei
- a School of Public Health , Medical College of Soochow University , Suzhou , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Jie Zhang
- a School of Public Health , Medical College of Soochow University , Suzhou , China
| | - Shu-Yu Zhang
- c School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , China
- d Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , Suzhou , China
| | - Yang Jiao
- c School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection , Medical College of Soochow University , Suzhou , China
- d Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , Suzhou , China
| | - Jian Tong
- a School of Public Health , Medical College of Soochow University , Suzhou , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| |
Collapse
|
73
|
In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact. BMC Cancer 2015; 15:579. [PMID: 26253487 PMCID: PMC4529727 DOI: 10.1186/s12885-015-1590-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
Background The benefit of better ballistic and higher efficiency of carbon ions for cancer treatment (hadron-therapy) is asserted since decades, especially for unresectable or resistant tumors like sarcomas. However, hadron-therapy with carbon ions stays underused and raises some concerns about potential side effects for patients. Chondrosarcoma is a cartilaginous tumor, chemo- and radiation-resistant, that lacks reference models for basic and pre-clinical studies in radiation-biology. Most studies about cellular effects of ionizing radiation, including hadrons, were performed under growth conditions dramatically different from human homeostasis. Tridimensional in vitro models are a fair alternative to animal models to approach tissue and tumors microenvironment. Methods By using a collagen matrix, standardized culture conditions, physiological oxygen tension and a well defined chondrosarcoma cell line, we developed a pertinent in vitro 3D model for hadron-biology studies. Low- and high-Linear Energy Transfer (LET) ionizing radiations from GANIL facilities of ~1 keV/μm and 103 ± 4 keV/μm were used respectively, at 2 Gy single dose. The impact of radiation quality on chondrosarcoma cells cultivated in 3D was analyzed on cell death, cell proliferation and DNA repair. Results A fair distribution of chondrosarcoma cells was observed in the whole 3D scaffold. Moreover, LET distribution in depth, for ions, was calculated and found acceptable for radiation-biology studies using this kind of scaffold. No difference in cell toxicity was observed between low- and high-LET radiations but a higher rate of proliferation was displayed following high-LET irradiation. Furthermore, 3D models presented a higher and longer induction of H2AX phosphorylation after 2 Gy of high-LET compared to low-LET radiations. Conclusions The presented results show the feasibility and usefulness of our 3D chondrosarcoma model in the study of the impact of radiation quality on cell fate. The observed changes in our tissue-like model after ionizing radiation exposure may explain some discrepancies between radiation-biology studies and clinical data. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1590-5) contains supplementary material, which is available to authorized users.
Collapse
|