51
|
Peng Y, Yu H, Zhang Y, Qu F, Tang Z, Qu C, Tian J, Zong B, Wang Y, Ren H, Liu S. A ferroptosis-associated gene signature for the prediction of prognosis and therapeutic response in luminal-type breast carcinoma. Sci Rep 2021; 11:17610. [PMID: 34475496 PMCID: PMC8413464 DOI: 10.1038/s41598-021-97102-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a new form of regulated cell death (RCD), and its emergence has provided a new approach to the progression and drug resistance of breast cancer (BRCA). However, there is still a great gap in the study of ferroptosis-related genes in BRCA, especially luminal-type BRCA patients. We downloaded the mRNA expression profiles and corresponding clinical data of BRCA patients from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) databases. Then, we built a prognostic multigene signature with ferroptosis-related differentially expressed genes (DEGs) in the METABRIC cohort and validated it in the TCGA cohort. The predictive value of this signature was investigated in terms of the immune microenvironment and the probability of a response to immunotherapy and chemotherapy. The patients were divided into a high-risk group and a low-risk group according to the ferroptosis-associated gene signature, and the high-risk group had a worse overall survival (OS). The risk score based on the 10 ferroptosis-related gene-based signature was determined to be an independent prognostic predictor in both the METABRIC and TCGA cohorts (HR, 1.41, 95% CI, 1.14-1.76, P = 0.002; HR, 2.19, 95% CI, 1.13-4.26, P = 0.02). Gene set enrichment analysis indicated that the term "cytokine-cytokine receptor interaction" was enriched in the high-risk score subgroup. Moreover, the immune infiltration scores of most immune cells were significantly different between the two groups, the low-risk group was much more sensitive to immunotherapy, and six drugs might have potential therapeutic implications in the high-risk group. Finally, a nomogram incorporating a classifier based on the 10 ferroptosis-related genes, tumor stage, age and histologic grade was established. This nomogram showed favorable discriminative ability and could help guide clinical decision-making for luminal-type breast carcinoma.
Collapse
Affiliation(s)
- Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Medical Faculty of Ludwig-Maximilians-University of Munich, University Hospital of LMU Munich, Munich, Germany
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanli Qu
- Department of Breast Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
52
|
Xu F, Zhang Z, Zhao Y, Zhou Y, Pei H, Bai L. Bioinformatic mining and validation of the effects of ferroptosis regulators on the prognosis and progression of pancreatic adenocarcinoma. Gene 2021; 795:145804. [PMID: 34175402 DOI: 10.1016/j.gene.2021.145804] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis, a new form of programmed cell death, provides a new option for anti-tumor treatment. However, the roles of ferroptosis-related (FR) genes in pancreatic adenocarcinoma (PAAD) were not fully elaborated. In the present study, 185 TCGA samples and 81 ICGC samples were used as training and validation cohorts, respectively. A novel FR risk signature (ALOX5, ALOX12, PTGS2, SAT1, STEAP3 and SQLE) was constructed via the Lasso regression analysis. In TCGA cohort, the risk signature was identified as an independent prognostic factor. Decision curve analysis (DCA) indicated that FR risk score could increase the net benefit when making clinical-decision. In addition, we constructed a nomogram to predict the overall survival rate (OSR) of individual at 1,2,3 year. Meanwhile, the prognostic value was partly validated in ICGC cohort. Through immune analyses, we found that high FR risk could affect the immune abundances of five lymphocytes but not effectively affect the activities of immune-related pathways. The expressions of most FR risk genes did not correlate with that of PD-L1(CD274) and CTLA4. Further, through RT-qPCR tests, the expressions of PTGS2 and SQLE were proven to be significantly upregulated in normal pancreatic duct epithelia cell (HPDE6-C7) compared to pancreatic cancer cells (SW1990 and BxPC-3). MTT, wound-healing and transwell assays revealed that silencing PTGS2 and SQLE could inhibit the proliferation, migration and invasion of pancreatic cancer cells. Besides, western-blot assays showed that blocking PTGS2 and SQLE expressions could suppress the protein expressions of cyclin D1 and N-cadherin, but facilitate that of E-cadherin, which suggested that they were involved in the epithelial to mesenchymal transition (EMT). Collectively, FR risk signature provides an important complement for PAAD prognostic analysis. High FR risk level can adversely affect anti-tumor immune process, but may not serve as a predictive marker of ICIs efficacy. PTGS2 and SQLE are proven to possess cancer-promoting abilities in PAAD.
Collapse
Affiliation(s)
- Fangshi Xu
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China; Department of Medicine, Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| | - Zhengliang Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| | - Yidi Zhao
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| | - Yang Zhou
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| | - Honghong Pei
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| | - Ling Bai
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China.
| |
Collapse
|
53
|
Yang L, Li C, Qin Y, Zhang G, Zhao B, Wang Z, Huang Y, Yang Y. A Novel Prognostic Model Based on Ferroptosis-Related Gene Signature for Bladder Cancer. Front Oncol 2021; 11:686044. [PMID: 34422642 PMCID: PMC8378228 DOI: 10.3389/fonc.2021.686044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Bladder cancer (BC) is a molecular heterogeneous malignant tumor; the treatment strategies for advanced-stage patients were limited. Therefore, it is vital for improving the clinical outcome of BC patients to identify key biomarkers affecting prognosis. Ferroptosis is a newly discovered programmed cell death and plays a crucial role in the occurrence and progression of tumors. Ferroptosis-related genes (FRGs) can be promising candidate biomarkers in BC. The objective of our study was to construct a prognostic model to improve the prognosis prediction of BC. Methods The mRNA expression profiles and corresponding clinical data of bladder urothelial carcinoma (BLCA) patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. FRGs were identified by downloading data from FerrDb. Differential analysis was performed to identify differentially expressed genes (DEGs) related to ferroptosis. Univariate and multivariate Cox regression analyses were conducted to establish a prognostic model in the TCGA cohort. BLCA patients from the GEO cohort were used for validation. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) were used to explore underlying mechanisms. Results Nine genes (ALB, BID, FADS2, FANCD2, IFNG, MIOX, PLIN4, SCD, and SLC2A3) were identified to construct a prognostic model. Patients were classified into high-risk and low-risk groups according to the signature-based risk score. Receiver operating characteristic (ROC) and Kaplan–Meier (K–M) survival analysis confirmed the superior predictive performance of the novel survival model based on the nine-FRG signature. Multivariate Cox regression analyses showed that risk score was an independent risk factor associated with overall survival (OS). GO and KEGG enrichment analysis indicated that apart from ferroptosis-related pathways, immune-related pathways were significantly enriched. ssGSEA analysis indicated that the immune status was different between the two risk groups. Conclusion The results of our study indicated that a novel prognostic model based on the nine-FRG signature can be used for prognostic prediction in BC patients. FRGs are potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Libo Yang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Li
- Second Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Qin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoying Zhang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Zhao
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ziyuan Wang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Youguang Huang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Yang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
54
|
Liu Y, Guo F, Guo W, Wang Y, Song W, Fu T. Ferroptosis-related genes are potential prognostic molecular markers for patients with colorectal cancer. Clin Exp Med 2021; 21:467-477. [PMID: 33674956 DOI: 10.1007/s10238-021-00697-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Ferroptosis is a newly discovered programmed cell death that plays a vital role in the occurrence and development of tumors. However, little is known about its prognostic value of ferroptosis-related genes (FRGs) in colorectal cancer (CRC). This study was to investigate the clinical significance of FRGs on overall survival (OS) of patients with CRC. The mRNA expression profiles and corresponding clinical data of CRC patients were downloaded from public databases. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to identify hub FRGs and establish a novel ferroptosis-related gene signature in predicting OS in training cohort, and assessed in the validation cohort. Then, the genomic-clinicopathologic nomogram integrating risk scores and clinicopathological features were established. Thirteen FRGs were identified to be most significantly related to the OS of CRC patients. Based on the LASSO Cox regression algorithm, we selected 10 genes from 13 FRGs to establish a prognostic risk signature. The log-rank test and Kaplan-Meier analysis confirmed the predictive value of the risk scores for OS in CRC patients. The time-dependent receiver operating characteristic (tdROC) of signature indicates the showed powerful prediction ability in both training cohort and validation cohort. Then, a genomic-clinicopathologic nomogram integrating age, stage, and risk scores was established and demonstrated high predictive accuracy and clinical value, which was validated through tdROC and calibration curves. The ferroptosis-related gene signature and genomic-clinicopathologic nomogram could be used to predict the prognosis of CRC patients and might also be potential therapeutic targets.
Collapse
Affiliation(s)
- Yanliang Liu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Fengqin Guo
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wenyi Guo
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Yatao Wang
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
55
|
Cheng F, Zheng B, Wang J, Zhao G, Yao Z, Niu Z, He W. Comprehensive analysis of a new prognosis signature based on histone deacetylases in clear cell renal cell carcinoma. Cancer Med 2021; 10:6503-6514. [PMID: 34308568 PMCID: PMC8446567 DOI: 10.1002/cam4.4156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDAC) family is vital for tumorigenesis and tumor progression. However, the exact role of the HDAC family in clear cell renal cell carcinoma (ccRCC) remains unclear. Based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and The Human Protein Atlas (HPA) database, we investigated and validated the expression profile, clinical significance and prognostic value of HDAC family members in ccRCC. Moreover, we further explored the correlation between HDACs and tumor microenvironment, tumor stemness, drug activity and immune subtype. The HDAC8, HDAC10, and HDAC11 manifested potential clinical value for prognosis, and the correlation analyses reveals underlying molecular mechanisms, which deserve further investigation for ccRCC. This Integrated bioinformatics analysis, based on transcriptomics and proteomics, implied that HDAC8, HDAC10, and HDAC11 may serve as potential molecular biomarkers and therapeutic targets for ccRCC, but some underlying molecular mechanisms still need to be elucidated.
Collapse
Affiliation(s)
- Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bin Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Jianwei Wang
- Department of Urology, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Guiting Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhongshun Yao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhihong Niu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Wei He
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
56
|
Li H, Zhang X, Yi C, He Y, Chen X, Zhao W, Yu D. Ferroptosis-related gene signature predicts the prognosis in Oral squamous cell carcinoma patients. BMC Cancer 2021; 21:835. [PMID: 34284753 PMCID: PMC8290602 DOI: 10.1186/s12885-021-08478-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The prognosis of oral squamous cell carcinoma (OSCC) patients is difficult to predict or describe due to its high-level heterogeneity and complex aetiologic factors. Ferroptosis is a novel form of iron-dependent cell death that is closely related to tumour growth and progression. This study aims to clarify the predictive value of ferroptosis-related genes (FRGs) on the overall survival(OS) of OSCC patients. METHODS The mRNA expression profile of FRGs and clinical information of patients with OSCC were collected from the TCGA database. Candidate differentially expressed ferroptosis-related genes (DE-FRGs) were identified by analysing differences between OSCC and adjacent normal tissues. A gene signature of prognosis-related DE-FRGs was established by univariate Cox analysis and LASSO analysis in the training set. Patients were then divided into high- and low-risk groups according to the cut-off value of risk scores, A nomogram was constructed to quantify the contributions of gene signature and clinical parameters to OS. Then several bioinformatics analyses were used to verify the reliability and accuracy of the model in the validation set. Finally, single-sample gene set enrichment analysis (ssGSEA) was also performed to reveal the underlying differences in immune status between different risk groups. RESULTS A prognostic model was constructed based on 10 ferroptosis-related genes. Patients in high-risk group had a significantly worse OS (p < 0.001). The gene signature was verified as an independent predictor for the OS of OSCC patients (HR > 1, p < 0.001). The receiver operating characteristic curve displayed the favour predictive performance of the risk model. The prediction nomogram successfully quantified each indicator's contribution to survival and the concordance index and calibration plots showed its superior predictive capacity. Finally, ssGSEA preliminarily indicated that the poor prognosis in the high-risk group might result from the dysregulation of immune status. CONCLUSION This study established a 10-ferroptosis-releated gene signature and nomogram that can be used to predict the prognosis of OSCC patients, which provides new insight for future anticancer therapies based on potential FRG targets.
Collapse
Affiliation(s)
- Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Oral Emergency, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
57
|
Liu H, Gao L, Xie T, Li J, Zhai TS, Xu Y. Identification and Validation of a Prognostic Signature for Prostate Cancer Based on Ferroptosis-Related Genes. Front Oncol 2021; 11:623313. [PMID: 34336641 PMCID: PMC8320699 DOI: 10.3389/fonc.2021.623313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, an iron-dependent form of selective cell death, is involved in the development of many cancers. However, ferroptosis related genes (FRGs) in prostate cancer (PCa) are not been well studied. In this study, we collected the mRNA expression profiles and clinical information of PCa patients from TCGA and MSKCC databases. The univariate, LASSO, and multivariate Cox regression analyses were performed to construct a prognostic signature. Seven FRGs, AKR1C3, ALOXE3, ATP5MC3, CARS1, MT1G, PTGS2, and TFRC, were included to establish a risk model, which was validated in the MSKCC dataset. The results showed that the high-risk group was apparently correlated with copy number alteration load, tumor burden mutation, immune cell infiltration, mRNAsi, immunotherapy, and bicalutamide response. Moreover, we found that TFRC overexpression induced the proliferation and invasion of PCa cell lines in vitro. These results demonstrate that this risk model can accurately predict prognosis, suggesting that FRGs are promising prognostic biomarkers and potential drug targets in PCa patients.
Collapse
Affiliation(s)
- Huan Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tiancheng Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Jie Li
- Department of Orthopedics, Jingan District Zhabei Central Hospital, Shanghai, China
| | - Ting-Shuai Zhai
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| |
Collapse
|
58
|
Li F, Ge D, Sun SL. A novel ferroptosis-related genes model for prognosis prediction of lung adenocarcinoma. BMC Pulm Med 2021; 21:229. [PMID: 34256754 PMCID: PMC8276441 DOI: 10.1186/s12890-021-01588-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocarcinoma (LUAD). Methods RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prognosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well. Results High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the training set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results. Conclusions This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01588-2.
Collapse
Affiliation(s)
- Fei Li
- The First Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Dongcen Ge
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, NO. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
59
|
Liu T, Luo H, Zhang J, Hu X, Zhang J. Molecular identification of an immunity- and Ferroptosis-related gene signature in non-small cell lung Cancer. BMC Cancer 2021; 21:783. [PMID: 34229636 PMCID: PMC8259362 DOI: 10.1186/s12885-021-08541-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
Background Lung cancer is one of the dominant causes of cancer-related deaths worldwide. Ferroptosis, an iron-dependent form of programmed cell death, plays a key role in cancer immunotherapy. However, the role of immunity- and ferroptosis-related gene signatures in non-small cell lung cancer (NSCLC) remain unclear. Methods RNA-seq data and clinical information pertaining to NSCLC were collected from The Cancer Genome Atlas dataset. Univariate and multivariate Cox regression analyses were performed to identify ferroptosis-related genes. A receiver operating characteristic (ROC) model was established for sensitivity and specificity evaluation. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to explore the function roles of differentially expressed genes. Results A signature composed of five ferroptosis-related genes was established to stratify patients into high- and low-risk subgroups. In comparison with patients in the low-risk group, those in the high-risk one showed significantly poor overall survival in the training and validation cohorts (P < 0.05). Multivariate Cox regression analysis indicated risk score to be an independent predictor of overall survival (P < 0.01). Further, the 1-, 2-, and 3-year ROCs were 0.623 vs. 0.792 vs. 0.635, 0.644 vs. 0.792 vs. 0.634, and 0.631 vs. 0.641 vs. 0.666 in one training and two validation cohorts, respectively. Functional analysis revealed that immune-related pathways were enriched and associated with abnormal activation of immune cells. Conclusions We identified five immunity- and ferroptosis-related genes that may be involved in NSCLC progression and prognosis. Targeting ferroptosis-related genes seems to be an alternative to clinical therapy for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08541-w.
Collapse
Affiliation(s)
- Taisheng Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Honglian Luo
- College of Oncology, Guangxi Medical University, Nanning, 530021, P. R. China
| | - Jinye Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Xiaoshan Hu
- Internal Medicine of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Jian Zhang
- Department of Radiation Oncology, State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China.
| |
Collapse
|
60
|
Qi X, Wang R, Lin Y, Yan D, Zuo J, Chen J, Shen B. A Ferroptosis-Related Gene Signature Identified as a Novel Prognostic Biomarker for Colon Cancer. Front Genet 2021; 12:692426. [PMID: 34276794 PMCID: PMC8280527 DOI: 10.3389/fgene.2021.692426] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background Colon cancer (CC) is a common gastrointestinal malignant tumor with high heterogeneity in clinical behavior and response to treatment, making individualized survival prediction challenging. Ferroptosis is a newly discovered iron-dependent cell death that plays a critical role in cancer biology. Therefore, identifying a prognostic biomarker with ferroptosis-related genes provides a new strategy to guide precise clinical decision-making in CC patients. Methods Alteration in the expression profile of ferroptosis-related genes was initially screened in GSE39582 dataset involving 585 CC patients. Univariate Cox regression analysis and LASSO-penalized Cox regression analysis were combined to further identify a novel ferroptosis-related gene signature for overall survival prediction. The prognostic performance of the signature was validated in the GSE17536 dataset by Kaplan-Meier survival curve and time-dependent ROC curve analyses. Functional annotation of the signature was explored by integrating GO and KEGG enrichment analysis, GSEA analysis and ssGSEA analysis. Furthermore, an outcome risk nomogram was constructed considering both the gene signature and the clinicopathological features. Results The prognostic signature biomarker composed of 9 ferroptosis-related genes accurately discriminated high-risk and low-risk patients with CC in both the training and validation datasets. The signature was tightly linked to clinicopathological features and possessed powerful predictive ability for distinct clinical subgroups. Furthermore, the risk score was confirmed to be an independent prognostic factor for CC patients by multivariate Cox regression analysis (p < 0.05). Functional annotation analyses showed that the prognostic signature was closely correlated with pivotal cancer hallmarks, particularly cell cycle, transcriptional regulation, and immune-related functions. Moreover, a nomogram with the signature was also built to quantify outcome risk for each patient. Conclusion The novel ferroptosis-related gene signature biomarker can be utilized for predicting individualized prognosis, optimizing survival risk assessment and facilitating personalized management of CC patients.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Rui Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Donghui Yan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiachen Zuo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institute for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Qiu CJ, Wang XB, Zheng ZR, Yang CZ, Lin K, Zhang K, Tu M, Jiang KR, Gao WT. Development and validation of a ferroptosis-related prognostic model in pancreatic cancer. Invest New Drugs 2021; 39:1507-1522. [PMID: 34195903 DOI: 10.1007/s10637-021-01114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. METHODS Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established a prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. The relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER. RESULTS The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5), and the risk score was demonstrated to be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The low-risk group had a better prognosis than the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and the adherens junction. The prognostic model may be associated with infiltration of immune cells such as M0 macrophages, M1 macrophages, CD4 + T cells and CD8 + T cells. CONCLUSION The ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis is an important marker, and immunotherapy may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Chen-Jie Qiu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Bing Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-Ruo Zheng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Zhi Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen-Tao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
62
|
Chen J, Zhan Y, Zhang R, Chen B, Huang J, Li C, Zhang W, Wang Y, Gao Y, Zheng J, Li Y. A New Prognostic Risk Signature of Eight Ferroptosis-Related Genes in the Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:700084. [PMID: 34249761 PMCID: PMC8267866 DOI: 10.3389/fonc.2021.700084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma and has poor prognosis in the locally advanced stage. Ferroptosis, a relatively new type of cell death, has gained significant attention in recent years. This study aimed to explore the prognostic value of ferroptosis-related genes (FRGs) in ccRCC. In this study, 50 differentially expressed FRGs between ccRCC and adjacent normal kidney tissues were identified, 26 of them correlated with overall survival (OS) (P <0.05). Eight optimal FRGs were selected by Lasso regression and multivariate Cox regression analysis, and used to construct a new prognostic risk signature to predict the prognosis of ccRCC patients. In addition, the signature passed the validation of prognostic survival analyses by a significant margin, and the risk score was identified as an independent prognostic marker via Cox regression analyses. Further studies indicated that the signature was significantly correlated with immune cell infiltration. Moreover, the levels of eight FRGs were examined in ccRCC. Collectively, the 8-FRG prognostic risk signature helps the clinicians predict the prognosis and OS of the patients, and standardize prognostic assessments.
Collapse
Affiliation(s)
- Ji Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junting Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
63
|
Weijiao Y, Fuchun L, Mengjie C, Xiaoqing Q, Hao L, Yuan L, Desheng Y. Immune infiltration and a ferroptosis-associated gene signature for predicting the prognosis of patients with endometrial cancer. Aging (Albany NY) 2021; 13:16713-16732. [PMID: 34170849 PMCID: PMC8266342 DOI: 10.18632/aging.203190] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 04/10/2023]
Abstract
Ferroptosis, a form of programmed cell death induced by excess iron-dependent lipid peroxidation product accumulation, plays a critical role in cancer. However, there are few reports about ferroptosis in endometrial cancer (EC). This article explores the relationship between ferroptosis-related gene (FRG) expression and prognosis in EC patients. One hundred thirty-five FRGs were obtained by mining the literature, retrieving GeneCards and analyzing 552 malignant uterine corpus endometrial carcinoma (UCEC) samples, which were randomly assigned to training and testing groups (1:1 ratio), and 23 normal samples from The Cancer Genome Atlas (TCGA). We established a signature using eight screened FRGs (MDM2, GPX4, PRKAA2, PRNP, SLC11A2, ATP5MC3, PHKG2 and ACO1) related to overall survival using LASSO regression analysis. The samples were divided into low- and high-risk subgroups according to the median risk score. Kaplan-Meier survival curves showed that the low-risk group had better OS. ROC curves showed that this signature performed well in predicting OS (1-, 2-, 3-, and 5-year AUCs of 0.676, 0.775, 0.797, and 0.826, respectively). We systematically analyzed the immune infiltrating profile in UCEC samples from TCGA. Overall, our study identified a novel prognostic signature of 8 FRGs that can potentially predict the prognosis of EC.
Collapse
Affiliation(s)
- Yin Weijiao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, PR China
| | - Liao Fuchun
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Chen Mengjie
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Qin Xiaoqing
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Lai Hao
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Lin Yuan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yao Desheng
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
64
|
He F, Chen Z, Deng W, Zhan T, Huang X, Zheng Y, Yang H. Development and validation of a novel ferroptosis-related gene signature for predicting prognosis and immune microenvironment in head and neck squamous cell carcinoma. Int Immunopharmacol 2021; 98:107789. [PMID: 34130150 DOI: 10.1016/j.intimp.2021.107789] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Ferroptosis plays an important role across variable cancer types. However, few studies have focused on the prognostic patterns of ferroptosis-related genes in HNSCC. Cohorts with mRNA expression profiles, as well as corresponding clinical data of HNSCC patients from published studies, were collected and consolidated from public databases. We performed random survival forest analysis, Kaplan-Meier (KM) analysis of best combinations, and Cox regression analysis on 231 ferroptosis-related genes to construct a gene signature in the discovery cohort (TCGA), and later validated it in the validation cohort (GEO). The 7-gene signature was constructed to stratify patients into two groups according to their level of risk. Poorer overall survival (OS) was detected in the high risk (HRisk) group than in the low risk (LRisk) group in both the TCGA cohort (P < 0.0001, HR = 1.71, 95%CI:1.41-2.07) and the GEO cohort (P < 0.001, HR = 1.68, 95%CI:1.32-2.13). The risk score was identified as an independent predictive factor of OS in multivariate Cox regression analyses (HR > 1, P < 0.0001) in both cohorts. The signature's predictive capacity was proven by the time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis. Functional enrichment analysis revealed that immunosuppressive pathways such as matrix extracellular space, and (transforming growth factor-β)TGF-β were enriched. The HRisk group was strongly associated with upregulation of both cancer-related pathways and stromal scores, while higher proportions of anti-tumor immune cells and immune signatures were enriched in the LRisk group. In conclusion, the signature based on 7 ferroptosis-related genes could be applicable for predicting the prognosis of HNSCC, indicating that ferroptosis may be a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Feinan He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Zhigang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Deng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
65
|
A novel ferroptosis-related gene signature for prognostic prediction of patients with lung adenocarcinoma. Aging (Albany NY) 2021; 13:16144-16164. [PMID: 34115610 PMCID: PMC8266333 DOI: 10.18632/aging.203140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a heterogeneous disease characterized by high mortality and poor prognosis. Ferroptosis, a newly discovered iron-dependent type of cell death, has been found to play a crucial role in the development of cancers. However, little is known about the prognostic value of ferroptosis-related genes (FRGs) in LUAD. METHODS In the present study, RNA-seq transcriptome data of LUAD patients were obtained from The Cancer Genome Atlas (TCGA) database. Cox regression analysis was used to construct a multigene signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curves were utilized to assess the prognostic prediction efficiency of the constructed survival model. LUAD patients from the GSE30219 dataset were used for validation. RESULTS We found 46 differentially expressed FRGs between LUAD and adjacent normal tissues. Via univariate and multivariate Cox regression analyses, 5 differentially expressed FRGs were identified as being highly correlated with LUAD. Patients were divided into low- and high-risk groups according to the risk score. We found that the overall survival (OS) of patients in the high-risk group was significantly worse than that of their low-risk counterparts. (P < 0.0001 in the TCGA dataset and P = 0.044 in the GSE30219 cohort). In addition, gene set variation analysis (GSVA) of the tumor microenvironment of the two groups may explain the different survival of LUAD patients. CONCLUSIONS Our study identified a novel FRG signature that could be used to evaluate and predict the prognosis of LUAD patients, which might provide a new therapeutic target for the treatment of LUAD patients.
Collapse
|
66
|
Zhao GJ, Wu Z, Ge L, Yang F, Hong K, Zhang S, Ma L. Ferroptosis-Related Gene-Based Prognostic Model and Immune Infiltration in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:650416. [PMID: 34178024 PMCID: PMC8220217 DOI: 10.3389/fgene.2021.650416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common tumors in the urinary system. Ferroptosis plays a vital role in ccRCC development and progression. We did an update of ferroptosis-related multigene expression signature for individualized prognosis prediction in patients with ccRCC. Differentially expressed ferroptosis-related genes in ccRCC and normal samples were screened using The Cancer Genome Atlas. Univariate and multivariate Cox regression analyses and machine learning methods were employed to identify optimal prognosis-related genes. CARS1, CD44, FANCD2, HMGCR, NCOA4, SLC7A11, and ACACA were selected to establish a prognostic risk score model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these genes were mainly enriched in immune-related pathways; single-sample Gene Set Enrichment Analysis revealed several immune cells potentially related to ferroptosis. Kaplan-Meier survival analysis demonstrated that patients with high-risk scores had significantly poor overall survival (log-rank P = 7.815 × 10-11). The ferroptosis signature was identified as an independent prognostic factor. Finally, a prognostic nomogram, including the ferroptosis signature, age, histological grade, and stage status, was constructed. Analysis of The Cancer Genome Atlas-based calibration plots, C-index, and decision curve indicated the excellent predictive performance of the nomogram. The ferroptosis-related seven-gene risk score model is useful as a prognostic biomarker and suggests therapeutic targets for ccRCC. The prognostic nomogram may assist in individualized survival prediction and improve treatment strategies.
Collapse
Affiliation(s)
- Guo-Jiang Zhao
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Feilong Yang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
67
|
Chang K, Yuan C, Liu X. Ferroptosis-Related Gene Signature Accurately Predicts Survival Outcomes in Patients With Clear-Cell Renal Cell Carcinoma. Front Oncol 2021; 11:649347. [PMID: 33996565 PMCID: PMC8120155 DOI: 10.3389/fonc.2021.649347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
As a type of regulated cell death induced by Ras selective lethal (RSL) compounds such as erasti, ferroptosis is characterized by iron-dependent lipid peroxide accumulation to lethal levels. At present, little is known about the role of ferroptosis-related genes in clear-cell renal cell carcinoma (ccRCC). In the present study, the expression data of ferroptosis-related genes in ccRCC were obtained from the Cancer Genome Atlas (TCGA), and COX regression analysis was performed to construct a risk model of ferroptosis prognostic signature. The GEO database was used to verify the accuracy of the model. The following findings were made: the results reveal that the prognostic signature constructed by 11 ferroptosis genes (CARS, CD44, DPP4, GCLC, HMGCR, HSPB1, NCOA4, SAT1, PHKG2, GOT1, HMOX1) was significantly related to the overall survival (OS) of ccRCC patients based on the lowest Akaike information criterion (AIC); multivariate analysis indicates that ferroptosis-related gene prognostic signature was an independent prognostic factor in ccRCC patients; the calibration curve and c-index value (0.77) demonstrate that the nomogram with the signature could predict the survival of ccRCC patients; and enrichment analysis shows that the high-risk group were enriched in humoral immunity and receptor interaction pathways. The aforementioned findings indicate that the ferroptosis-related gene signature can accurately predict the prognosis of ccRCC patients and provide valuable insights for individualized treatment.
Collapse
Affiliation(s)
- Kaili Chang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueguang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
68
|
Ge M, Niu J, Hu P, Tong A, Dai Y, Xu F, Li F. A Ferroptosis-Related Signature Robustly Predicts Clinical Outcomes and Associates With Immune Microenvironment for Thyroid Cancer. Front Med (Lausanne) 2021; 8:637743. [PMID: 33928101 PMCID: PMC8076739 DOI: 10.3389/fmed.2021.637743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: This study aimed to construct a prognostic ferroptosis-related signature for thyroid cancer and probe into the association with tumor immune microenvironment. Methods: Based on the expression profiles of ferroptosis-related genes, a LASSO cox regression model was established for thyroid cancer. Kaplan-Meier survival analysis was presented between high and low risk groups. The predictive performance was assessed by ROC. The predictive independency was validated via multivariate cox regression analysis and stratified analysis. A nomogram was established and verified by calibration curves. The enriched signaling pathways were predicted via GSEA. The association between the signature and immune cell infiltration was analyzed by CIBERSORT. The ferroptosis-related genes were validated in thyroid cancer tissues by immunohistochemistry and RT-qPCR. Results: A ferroptosis-related eight gene model was established for predicting the prognosis of thyroid cancer. Patients with high risk score indicated a poorer prognosis than those with low risk score (p = 1.186e-03). The AUCs for 1-, 2-, and 3-year survival were 0.887, 0.890, and 0.840, respectively. Following adjusting other prognostic factors, the model could independently predict the prognosis (p = 0.015, HR: 1.870, 95%CI: 1.132–3.090). A nomogram combining the signature and age was constructed. The nomogram-predicted probability of 1-, 3-, and 5-year survival approached the actual survival time. Several ferroptosis-related pathways were enriched in the high-risk group. The signature was distinctly associated with the immune cell infiltration. After validation, the eight genes were abnormally expressed between thyroid cancer and control tissues. Conclusion: Our findings established a prognostic ferroptosis-related signature that was associated with the immune microenvironment for thyroid cancer.
Collapse
Affiliation(s)
- Mingqin Ge
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Jie Niu
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Ping Hu
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Aihua Tong
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Yan Dai
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Fangjiang Xu
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| | - Fuyuan Li
- Department of Endocrinology, Linyi Central Hospital, Linyi, China
| |
Collapse
|
69
|
Li D, Liu S, Xu J, Chen L, Xu C, Chen F, Xu Z, Zhang Y, Xia S, Shao Y, Wang Y. Ferroptosis-related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J Cell Mol Med 2021; 25:3610-3621. [PMID: 33728749 PMCID: PMC8034464 DOI: 10.1111/jcmm.16458] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
To evaluate the validity of CHAC1 for predicting the prognosis of kidney renal clear cell carcinoma (KIRC) and to explore its therapeutic potential for KIRC, we conducted several bioinformatic analyses using the sequencing data and clinical information derived from online databases. We found CHAC1 is down‐regulated in KIRC samples when compared with normal samples but up‐regulated in KIRC samples with relatively higher malignancy and later stages. Univariate cox analysis and multivariate cox regression analysis were conducted and the results revealed up‐regulated CHAC1 is an independent risk factor for poor prognosis of KIRC. Further, the nomogram model based on the result of multivariate cox regression analysis was constructed and effectively predicted patients' 1‐year, 3‐year and 5‐year survival respectively. The correlation analyses showed CHAC1 is associated with the immune pathway markers of memory B cell, natural killer cell and type1 T helper cell as well as the checkpoint genes like ADORA2A, CD200, CD44, CD70, HHLA2, NRP1, PDCD1LG2 and TNFRSF18. Furthermore, experiments in vitro indicated CHAC1 could induce cell death in KIRC cell lines but had limited influence on cell migration and cell invasion. In conclusion, CHAC1 is found a valid indicator for poor prognosis of kidney renal clear cell carcinoma.
Collapse
Affiliation(s)
- Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiwei Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Nursing Department, Wujiang Fifth People's Hospital, Suzhou, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiteng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
70
|
Czyzyk-Krzeska MF, Landero Figueroa JA, Gulati S, Cunningham JT, Meller J, ShamsaeI B, Vemuri B, Plas DR. Molecular and Metabolic Subtypes in Sporadic and Inherited Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:genes12030388. [PMID: 33803184 PMCID: PMC7999481 DOI: 10.3390/genes12030388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/18/2023] Open
Abstract
The promise of personalized medicine is a therapeutic advance where tumor signatures obtained from different omics platforms, such as genomics, transcriptomics, proteomics, and metabolomics, in addition to environmental factors including metals and metalloids, are used to guide the treatments. Clear cell renal carcinoma (ccRCC), the most common type of kidney cancer, can be sporadic (frequently) or genetic (rare), both characterized by loss of the von Hippel-Lindau (VHL) gene that controls hypoxia inducible factors. Recently, several genomic subtypes were identified with different prognoses. Transcriptomics, proteomics, metabolomics and metallomic data converge on altered metabolism as the principal feature of the disease. However, in view of multiple biochemical alterations and high level of tumor heterogeneity, identification of clearly defined subtypes is necessary for further improvement of treatments. In the future, single-cell combined multi-omics approaches will be the next generation of analyses gaining deeper insights into ccRCC progression and allowing for design of specific signatures, with better prognostic/predictive clinical applications.
Collapse
Affiliation(s)
- Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Correspondence:
| | - Julio A. Landero Figueroa
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| | - Jarek Meller
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (J.A.L.F.); (J.M.)
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA;
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Behrouz ShamsaeI
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Bhargav Vemuri
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.T.C.); (B.V.); (D.R.P.)
| |
Collapse
|
71
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|