51
|
Oki T, Aokage K, Nomura S, Tane K, Miyoshi T, Shiiya N, Funai K, Tsuboi M, Ishii G. Optimal method for measuring invasive size that predicts survival in invasive mucinous adenocarcinoma of the lung. J Cancer Res Clin Oncol 2020; 146:1291-1298. [PMID: 32088782 DOI: 10.1007/s00432-020-03158-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study was to determine the optimal method for measuring pathological invasive size that predicts prognosis in invasive mucinous adenocarcinoma (IMA). METHODS We analyzed patients who underwent complete surgical resection for lung IMA. The invasive size of IMA was measured using two methods: (1) excluding lepidic method (ELM), that is, lepidic component was excluded from the invasive area regardless of alveolar mucin and (2) including lepidic method (ILM), that is, lepidic component was included as invasive area if alveolar space was filled with mucin. The prognostic predictability of ELM and ILM on survival was assessed using univariable and multivariable Cox regression models. The discriminative power was assessed using concordance probability estimate (CPE) and Akaike's information criteria (AIC), and the prognostic impact of the newly redefined pathological stage according to ELM or ILM was also assessed. RESULTS A total of 101 patients were included. The median invasive size via ELM and ILM was 1.4 cm (range, 0.0-7.7 cm) and 2.1 cm (range, 0.0-14.2 cm), respectively. ELM had better discriminative power than ILM (ELM, HR = 1.38, AIC = 110.19, CPE = 0.671; ILM, HR = 1.19, AIC = 111.52, CPE = 0.655). Although the survival curves based on ILM crossed between T3 and T4, the overall survival (OS) curves based on ELM were sufficiently distinct from one another. CONCLUSIONS ELM has higher discriminative power for OS, and thus the optimal method for measuring the pathological invasive size of IMA should exclude the lepidic component regardless of alveolar mucin.
Collapse
Affiliation(s)
- Tomonari Oki
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shogo Nomura
- Biostatistics Division Center for Research Administration and Support, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Norihiko Shiiya
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
52
|
Kasiri S, Chen B, Wilson AN, Reczek A, Mazambani S, Gadhvi J, Noel E, Marriam U, Mino B, Lu W, Girard L, Solis LM, Luby-Phelps K, Bishop J, Kim JW, Kim J. Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species. Oncogene 2020; 39:3258-3275. [PMID: 32108165 PMCID: PMC7160060 DOI: 10.1038/s41388-020-1224-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects-a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to suppress tumor growth and metastases, in part, by limiting ROS activity.
Collapse
Affiliation(s)
- Sahba Kasiri
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Baozhi Chen
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Alexandra N Wilson
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Annika Reczek
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Evan Noel
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ummay Marriam
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luc Girard
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - James Kim
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
53
|
Rajeev LK, Thottian AGF, Amirtham U, Lokanatha D, Jacob LA, Babu MCS, Lokesh KN, Rudresha AH, Saldanha S, Hassan SA. Primary mucinous carcinomas of the lung: Clinical characteristics and treatment outcomes. Lung India 2020; 37:491-494. [PMID: 33154210 PMCID: PMC7879875 DOI: 10.4103/lungindia.lungindia_52_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Invasive mucinous adenocarcinoma (IMA) of the lung is a distinct histologic variant of adenocarcinomas comprising about 2%-10% of lung adenocarcinomas. A large proportion of IMAs carry KRAS mutations and only rarely epidermal growth factor receptor (EGFR) mutations or ALK/ROS translocations; thus, most cases are not amenable for targeted therapy at present. This study was conducted to elicit the unique clinicopathological characteristics of IMA. Materials and Methods Medical records of patients diagnosed with IMA by needle biopsy at Kidwai Cancer Institute, Bangalore, from 2013 to 2018, were retrieved and reviewed. Statistical analysis was performed using SPSS version 23.0 (IBM Corp., Armonk, NY, USA). Results Four hundred and ninety cases of needle biopsy of the lung were diagonosed at our institute between January 2013 and December 2018. Nine cases (1.8%) were diagnosed as IMA. The median age of presentation was 59 years. Six (66.7%) were current smokers with pack-year > 20. Three (33.3%) of the cases were initially misdiagnosed as pneumonia in view of computed tomography findings. The lung was the most common site of metastasis (77.8%). Serum Carcinoembryonic Antigen (CEA) was elevated in six cases (66.7%). None of the cases had any driver mutations in EGFR gene or ALK and ROS1 translocations. All cases were treated with pemetrexed-carboplatin doublet followed by pemetrexed maintenance till progression. The median progression-free survival (PFS) was 15 months (range: 5-18 months). Docetaxel was given as the second-line chemotherapy in all progressed patients. Best response noted was stable disease, seen in 4 (57.1%) cases. The median PFS for docetaxel was 6 months (range: 3-8 months). The median overall survival was 22 months (range: 9-27 months). Patients with initially raised CEA at progression had a serial rise in serum CEA. Conclusions IMA is rarely diagnosed on needle biopsies due to insufficient tissue. They mimic pneumonia on imaging, thus delaying diagnosis. EGFR mutations, ALK, and ROS1 translocations are usually negative making them ineligible for tyrosine kinase inhibitors. Response to chemotherapy is modest.
Collapse
Affiliation(s)
- L K Rajeev
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | | | - Usha Amirtham
- Department of Pathology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - D Lokanatha
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - Linu Abraham Jacob
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - M C Suresh Babu
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - K N Lokesh
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - A H Rudresha
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - Smitha Saldanha
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| | - Syed Adil Hassan
- Department of Medical Oncology, Kidwai Cancer Institute, Bengaluru, Karnataka, India
| |
Collapse
|
54
|
Xu L, Li C, Lu H. Invasive mucinous adenocarcinoma of the lung. Transl Cancer Res 2019; 8:2924-2932. [PMID: 35117050 PMCID: PMC8797341 DOI: 10.21037/tcr.2019.11.02] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Invasive mucinous adenocarcinoma (IMA) is a unique histological subtype of adenocarcinoma. Due to its low incidence rates, survival data for IMA is scarce and often contradictory. The clinical manifestations of IMA are not precise as compared to other adenocarcinomas, with some patients having bronchial mucus overflow. Difference in immunohistochemical expression levels is present in IMA and invasive non-mucinous adenocarcinomas (INMA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are more frequent in IMAs, while epidermal growth factor receptor (EGFR) mutations are relatively rare. This makes it distinct from the other more common adenocarcinomas. Neuregulin 1 (NRG1) gene fusions are considered important therapeutic targets for IMA, suggesting that Afatinib may be an effective drug to treat IMA. However, IMA prognosis remains controversial.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, The First People’s Hospital Yongkang, Yongkang 321300, China
| | - Chenghui Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Thoracic Medical Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongyang Lu
- Department of Thoracic Medical Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
55
|
Annexin A2 Expression in Aerogenous Metastasis of Pulmonary Invasive Mucinous Adenocarcinoma: A Case Report including Immunohistochemical Analysis. Case Rep Oncol Med 2019; 2019:5064852. [PMID: 31485361 PMCID: PMC6702807 DOI: 10.1155/2019/5064852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Aerogenous metastasis (AM) is a form of lung cancer that spreads in a unique fashion, but its mechanisms are still unclear. Annexin A2 (ANX A2), a membrane-binding protein, promotes cancer invasion and is involved in cell adhesion and polarity. The relationship between ANX A2 and cancers with poor stromal invasion capacity has not been studied. We immunohistochemically analyzed ANX A2 expression in AM observed in a patient with pulmonary invasive mucinous adenocarcinoma. In the primary site, ANX A2 immunopositivity on the cell-cell borders weakened as tumor cells projected and separated into alveolar spaces. In AM, tumor cell aggregates with ANX A2 immunopositivity near the surface and within the cytoplasm attached to alveolar epithelial cells, then engulfed them and formed a protrusion. As tumor cell aggregates adhered to the alveolar wall and formed a single layer, cytoplasmic ANX A2-positive products accumulated in the lateral sides of the tumor cells and exhibited distinct membranous positivity. These results indicated that ANX A2 near the tumor cell surface was related to alveolar wall attachment. Furthermore, the translocation of cytoplasmic ANX A2 to cell-cell borders changed cell morphology, adhesion, and polarity restoration.
Collapse
|
56
|
Nagasaka M, Ou SHI. Neuregulin 1 Fusion–Positive NSCLC. J Thorac Oncol 2019; 14:1354-1359. [DOI: 10.1016/j.jtho.2019.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
57
|
Hutchinson BD, Shroff GS, Truong MT, Ko JP. Spectrum of Lung Adenocarcinoma. Semin Ultrasound CT MR 2019; 40:255-264. [DOI: 10.1053/j.sult.2018.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
58
|
Xu X, Kong Z, Yi K, Wang B, Lei Q, Wang Y. Colonic mucinous adenocarcinoma causing intussusception and distant metastasis: A case report. Medicine (Baltimore) 2019; 98:e15740. [PMID: 31124954 PMCID: PMC6571361 DOI: 10.1097/md.0000000000015740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
RATIONALE Cases of intussusception caused by mucinous carcinoma have been rarely reported, and those caused by colonic mucinous adenocarcinoma (MAC) with distant metastasis were even fewer. PATIENT CONCERNS A 60-year-old woman who complained of severe pain around the navel with nausea and vomiting for a week was admitted on November 28, 2017. There were multiple watery stools and abdominal pain was worsened over the prior week. DIAGNOSIS She was diagnosed by abdominal computed tomography, current medical history, and abdominal signs. Her initial diagnosis was acute abdomen, intussusceptions, and intestinal obstruction. The final diagnosis was MAC, which was based on postoperative pathology. INTERVENTIONS The patient received emergency laparotomy, followed by 5 courses of chemotherapy with oxaliplatin plus capecitabine, and then 6 courses with 5-fluorouracil + oxaliplatin + calcium leucovorin. OUTCOMES The patient was in good nutritional condition, and no obvious tumor recurrence or metastasis was found until July 9, 2018. LESSONS Even though the prognosis of colonic MAC is poor, being able to receive timely surgical treatment, good nutritional status and reasonable postoperative chemotherapy are the key factors to prolonging patient's survival.
Collapse
|
59
|
Liu J, Zhao W, Ammous F, Turner ST, Mosley TH, Zhou X, Smith JA. Longitudinal analysis of epigenome-wide DNA methylation reveals novel smoking-related loci in African Americans. Epigenetics 2019; 14:171-184. [PMID: 30764717 PMCID: PMC6557606 DOI: 10.1080/15592294.2019.1581589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022] Open
Abstract
Changes in DNA methylation may be a potential mechanism that mediates the effects of smoking on physiological function and subsequent disease risk. Given the dynamic nature of the epigenome, longitudinal studies are indispensable for investigating smoking-induced methylation changes over time. Using blood samples collected approximately five years apart in 380 African Americans (mean age 60.7 years) from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, we measured DNA methylation levels using Illumina HumanMethylation BeadChips. We evaluated the association between Phase 1 smoking status and rate of methylation change, using generalized estimating equation models. Among the 6958 CpG sites examined, smoking status was associated with methylation change for 22 CpGs (false discovery rate q < 0.1), with the majority (91%) becoming less methylated over time. Methylation change was greater in ever smokers than never smokers, and the absolute differences in rates of change ranged from 0.18 to 0.77 per decade in M value, equivalent to a β value change of 0.013 to 0.047 per decade. Significant enrichment was observed for CpG islands, enhancers, and DNAse hypersensitivity sites (p < 0.05). Although biological pathway analyses were not significant, most of the 22 CpGs were within genes known to be associated with cardiovascular disease, cancers, and aging. In conclusion, we identified epigenetic signatures for cigarette smoking that may have been missed in cross-sectional analyses, providing insight into the epigenetic effect of smoking and highlighting the importance of longitudinal analysis in understanding the dynamic human epigenome.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
60
|
Hewitt LC, Saito Y, Wang T, Matsuda Y, Oosting J, Silva ANS, Slaney HL, Melotte V, Hutchins G, Tan P, Yoshikawa T, Arai T, Grabsch HI. KRAS status is related to histological phenotype in gastric cancer: results from a large multicentre study. Gastric Cancer 2019; 22:1193-1203. [PMID: 31111275 PMCID: PMC6811379 DOI: 10.1007/s10120-019-00972-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is histologically a very heterogeneous disease, and the temporal development of different histological phenotypes remains unclear. Recent studies in lung and ovarian cancer suggest that KRAS activation (KRASact) can influence histological phenotype. KRASact likely results from KRAS mutation (KRASmut) or KRAS amplification (KRASamp). The aim of the study was to investigate whether KRASmut and/or KRASamp are related to the histological phenotype in GC. METHODS Digitized haematoxylin/eosin-stained slides from 1282 GC resection specimens were classified according to Japanese Gastric Cancer Association (JGCA) and the Lauren classification by at least two observers. The relationship between KRAS status, predominant histological phenotype and clinicopathological variables was assessed. RESULTS KRASmut and KRASamp were found in 68 (5%) and 47 (7%) GCs, respectively. Within the KRASmut and KRASamp cases, the most frequent GC histological phenotype was moderately differentiated tubular 2 (tub2) type (KRASmut: n = 27, 40%; KRASamp: n = 21, 46%) or intestinal type (KRASmut: n = 41, 61%; KRASamp: n = 23, 50%). Comparing individual histological subtypes, mucinous carcinoma displayed the highest frequency of KRASmut (JGCA: n = 6, 12%, p = 0.012; Lauren: n = 6, 12%, p = 0.013), and KRASamp was more frequently found in poorly differentiated solid type (n = 12, 10%, p = 0.267) or indeterminate type (n = 12, 10%, p = 0.480) GC. 724 GCs (57%) had intratumour morphological heterogeneity. CONCLUSIONS This is the largest GC study investigating KRAS status and histological phenotype. We identified a relationship between KRASmut and mucinous phenotype. The high level of intratumour morphological heterogeneity could reflect KRASmut heterogeneity, which may explain the failure of anti-EGFR therapy in GC.
Collapse
Affiliation(s)
- Lindsay C. Hewitt
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Yuichi Saito
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Tan Wang
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan ,Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaldo N. S. Silva
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Hayley L. Slaney
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Veerle Melotte
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Department of Clinical Genetics, Erasmus University Medical Center, University of Rotterdam, Rotterdam, The Netherlands
| | - Gordon Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan ,Department of Gastrointestinal Surgery, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Heike I. Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| |
Collapse
|
61
|
Genomic Characteristics of Invasive Mucinous Adenocarcinomas of the Lung and Potential Therapeutic Targets of B7-H3. Cancers (Basel) 2018; 10:cancers10120478. [PMID: 30513627 PMCID: PMC6316015 DOI: 10.3390/cancers10120478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary invasive mucinous adenocarcinoma (IMA) is considered a variant of lung adenocarcinomas based on the current World Health Organization classification of lung tumors. However, the molecular mechanism driving IMA development and progression is not well understood. Thus, we surveyed the genomic characteristics of IMA in association with immune-checkpoint expression to investigate new potential therapeutic strategies. Tumor cells were collected from surgical specimens of primary IMA, and sequenced to survey 53 genes associated with lung cancer. The mutational profiles thus obtained were compared in silico to conventional adenocarcinomas and other histologic carcinomas, thereby establishing the genomic clustering of lung cancers. Immunostaining was also performed to compare expression of programmed death ligand 1 (PD-L1) and B7-H3 in IMA and conventional adenocarcinomas. Mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) were detected in 75% of IMAs, but in only 11.6% of conventional adenocarcinomas. On the other hand, the frequency of mutations in epidermal growth factor receptor (EGFR) and tumor protein p53 (TP53) genes was 5% and 10%, respectively, in the former, but 48.8% and 34.9%, respectively, in the latter. Clustering of all 78 lung cancers indicated that IMA is distinct from conventional adenocarcinoma or squamous cell carcinoma. Strikingly, expression of PD-L1 in ≥1% of cells was observed in only 6.1% of IMAs, but in 59.7% of conventional adenocarcinomas. Finally, 42.4% and 19.4% of IMAs and conventional adenocarcinomas, respectively, tested positive for B7-H3. Although currently classified as a variant of lung adenocarcinoma, it is also reasonable to consider IMA as fundamentally distinct, based on mutation profiles and genetic clustering as well as immune-checkpoint status. The immunohistochemistry data suggest that B7-H3 may be a new and promising therapeutic target for immune checkpoint therapy.
Collapse
|