51
|
Multiple wheat genomes reveal global variation in modern breeding. Nature 2020; 588:277-283. [PMID: 33239791 PMCID: PMC7759465 DOI: 10.1038/s41586-020-2961-x] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars. Comparison of multiple genome assemblies from wheat reveals extensive diversity that results from the complex breeding history of wheat and provides a basis for further potential improvements to this important food crop.
Collapse
|
52
|
Ayalew H, Sorrells ME, Carver BF, Baenziger PS, Ma XF. Selection signatures across seven decades of hard winter wheat breeding in the Great Plains of the United States. THE PLANT GENOME 2020; 13:e20032. [PMID: 33217215 DOI: 10.1002/tpg2.20032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Classical plant breeding has been instrumental in changing the genetic makeup of crop plants for better ecological adaptation and improved quality. This paper provides insights of the genomic changes effected in hard winter wheat (Triticum aestivum L.) through decades of breeding and selection in the Great Plains of the United States. Population structure and differentiation analyses were conducted on 185 wheat cultivars released from 1943 to 2013. Cultivars were grouped into four distinct clusters using discriminant analysis of principal components (DAPC). One of the clusters was unique in that 15 out of the 18 individuals were recent releases (2000-2010), while 12 of the 18 shared the cultivar 'Jagger' in their genetic background. Jagger carries a 2NS/2AS translocation segment from Aegilops ventricosa, an important segment for resistance to several foliar diseases. Using the outlier approach, Wright's population fixation index (Fst) identified 450 loci that were directionally selected. The largest signature of selection was found on chromosome 2A. Genetic diversity was high while the inbreeding coefficient was low, indicating extensive hybridization and germplasm exchange among breeding programs within the region. Foliar disease pressure and selection for resistance helped shape the microevolution of wheat in the southern Great Plains. The results showed that high genetic diversity remains in hard winter wheat cultivars adapted to the Great Plains of the USA, and modern plant breeding did not cause any sizable reduction in genetic diversity of the crop in this region.
Collapse
Affiliation(s)
| | - Mark E Sorrells
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, 73401, USA
| |
Collapse
|
53
|
Horo JT, Asuke S, Vy TTP, Tosa Y. Effectiveness of the Wheat Blast Resistance Gene Rmg8 in Bangladesh Suggested by Distribution of an AVR-Rmg8 Allele in the Pyricularia oryzae Population. PHYTOPATHOLOGY 2020; 110:1802-1807. [PMID: 32960712 DOI: 10.1094/phyto-03-20-0073-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat blast caused by the Triticum pathotype of Pyricularia oryzae was first reported in 1985 in Brazil and recently spread to Bangladesh. We tested whether Rmg8 and RmgGR119, recently identified resistance genes, were effective against Bangladeshi isolates of the pathogen. Common wheat accessions carrying Rmg8 alone (IL191) or both Rmg8 and RmgGR119 (GR119) were inoculated with Brazilian isolates (Br48, Br5, and Br116.5) and Bangladeshi isolates (T-108 and T-109). Br48, T-108, and T-109 carried the eI type of AVR-Rmg8 (the avirulence gene corresponding to Rmg8) while Br5 and Br116.5 carried its variants, eII and eII' types, respectively. Detached primary leaves of IL191 and GR119 were resistant to all isolates at 25°C. At a higher temperature (28°C), their resistance was still effective against the eI carriers but was reduced to a low level against the eII/eII' carriers. A survey of databases and sequence analyses revealed that all Bangladeshi isolates carried the eI type which induced a higher level of resistance than the eII/eII' types. The resistance of IL191 (Rmg8/-) to the eI carriers was maintained even at the heading stage and at the higher temperature. In addition, GR119 (Rmg8/RmgGR119) displayed higher levels of resistance than IL191 at this stage. These results suggest that Rmg8 combined with RmgGR119 will be useful in breeding for resistance against wheat blast in Bangladesh.
Collapse
Affiliation(s)
- Jemal Tola Horo
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
54
|
Juliana P, He X, Kabir MR, Roy KK, Anwar MB, Marza F, Poland J, Shrestha S, Singh RP, Singh PK. Genome-wide association mapping for wheat blast resistance in CIMMYT's international screening nurseries evaluated in Bolivia and Bangladesh. Sci Rep 2020; 10:15972. [PMID: 33009436 PMCID: PMC7532450 DOI: 10.1038/s41598-020-72735-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Wheat blast caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) is an emerging threat to wheat production. To identify genomic regions associated with blast resistance against MoT isolates in Bolivia and Bangladesh, we performed a large genome-wide association mapping study using 8607 observations on 1106 lines from the International Maize and Wheat Improvement Centre’s International Bread Wheat Screening Nurseries (IBWSNs) and Semi-Arid Wheat Screening Nurseries (SAWSNs). We identified 36 significant markers on chromosomes 2AS, 3BL, 4AL and 7BL with consistent effects across panels or site-years, including 20 markers that were significant in all the 49 datasets and tagged the 2NS translocation from Aegilops ventricosa. The mean blast index of lines with and without the 2NS translocation was 2.7 ± 4.5 and 53.3 ± 15.9, respectively, that substantiates its strong effect on blast resistance. Furthermore, we fingerprinted a large panel of 4143 lines for the 2NS translocation that provided excellent insights into its frequency over years and indicated its presence in 94.1 and 93.7% of lines in the 2019 IBWSN and SAWSN, respectively. Overall, this study reinforces the effectiveness of the 2NS translocation for blast resistance and emphasizes the urgent need to identify novel non-2NS sources of blast resistance.
Collapse
Affiliation(s)
- Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Muhammad R Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Krishna K Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Md Babul Anwar
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
55
|
He X, Kabir MR, Roy KK, Anwar MB, Xu K, Marza F, Odilbekov F, Chawade A, Duveiller E, Huttner E, Singh PK. QTL mapping for field resistance to wheat blast in the Caninde#1/Alondra population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2673-2683. [PMID: 32488302 PMCID: PMC7419448 DOI: 10.1007/s00122-020-03624-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/23/2020] [Indexed: 05/26/2023]
Abstract
Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and multiple minor QTL in an additive mode. Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line population with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one location in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 2017-2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being potentially useful in marker-assisted selection.
Collapse
Affiliation(s)
- Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Muhammad Rezaul Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Krishna K Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Md Babul Anwar
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia
| | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| | - Etienne Duveiller
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Eric Huttner
- Australian Centre for International Agricultural Research, 38 Thynne St, Bruce, ACT, 2617, Australia
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
56
|
Goddard R, Steed A, Chinoy C, Ferreira JR, Scheeren PL, Maciel JLN, Caierão E, Torres GAM, Consoli L, Santana FM, Fernandes JMC, Simmonds J, Uauy C, Cockram J, Nicholson P. Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC PLANT BIOLOGY 2020; 20:398. [PMID: 32854622 PMCID: PMC7451118 DOI: 10.1186/s12870-020-02592-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/12/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is a global threat to wheat (Triticum aestivum L.) production. Few blast resistance (R) genes have been identified to date, therefore assessing potential sources of resistance in wheat is important. The Brazilian wheat cultivar BR 18-Terena is considered one of the best sources of resistance to blast and has been widely used in Brazilian breeding programmes, however the underlying genetics of this resistance are unknown. RESULTS BR 18-Terena was used as the common parent in the development of two recombinant inbred line (RIL) F6 populations with the Brazilian cultivars Anahuac 75 and BRS 179. Populations were phenotyped for resistance at the seedling and heading stage using the sequenced MoT isolate BR32, with transgressive segregation being observed. Genetic maps containing 1779 and 1318 markers, were produced for the Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179 populations, respectively. Five quantitative trait loci (QTL) associated with seedling resistance, on chromosomes 2B, 4B (2 QTL), 5A and 6A, were identified, as were four QTL associated with heading stage resistance (1A, 2B, 4A and 5A). Seedling and heading stage QTL did not co-locate, despite a significant positive correlation between these traits, indicating that resistance at these developmental stages is likely to be controlled by different genes. BR 18-Terena provided the resistant allele for six QTL, at both developmental stages, with the largest phenotypic effect conferred by a QTL being 24.8% suggesting that BR 18-Terena possesses quantitative resistance. Haplotype analysis of 100 Brazilian wheat cultivars indicates that 11.0% of cultivars already possess a BR 18-Terena-like haplotype for more than one of the identified heading stage QTL. CONCLUSIONS This study suggests that BR 18-Terena possesses quantitative resistance to wheat blast, with nine QTL associated with resistance at either the seedling or heading stage being detected. Wheat blast resistance is also largely tissue-specific. Identification of durable quantitative resistances which can be combined with race-specific R gene-mediated resistance is critical to effectively control wheat blast. Collectively, this work facilitates marker-assisted selection to develop new varieties for cultivation in regions at risk from this emerging disease.
Collapse
Affiliation(s)
- Rachel Goddard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Catherine Chinoy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
57
|
Fernández-Campos M, Góngora-Canul C, Das S, Kabir MR, Valent B, Cruz CD. Epidemiological Criteria to Support Breeding Tactics Against the Emerging, High-Consequence Wheat Blast Disease. PLANT DISEASE 2020; 104:2252-2261. [PMID: 32584156 DOI: 10.1094/pdis-12-19-2672-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant disease epidemiology can make a significant contribution for cultivar selection by elucidating the principles of an epidemic under different levels of resistance. For emerging diseases as wheat blast (WB), epidemiological parameters can provide support for better selection of genetic resources. Field experiments were conducted at two locations in Bolivia in 2018-2019 to characterize the temporal dynamics of the disease on 10 cultivars with different levels of reaction to WB. Logistic models best (R2 = 0.70-0.96) fit the disease progress curve in all cultivars followed by Gompertz (R2 = 0.64-0.94), providing additional evidence of a polycyclic disease. Total area under disease progress curve (tAUDPC), final disease severity (Ymax), and logistic apparent infection rates (rL*) were shown to be appropriate epidemiological parameters for describing resistance and cultivar selection. Cultivars that showed a high spike AUDPC (sAUDPC) showed a high leaf AUDPC (lAUDPC). tAUPDC, Ymax, and rL* were positively correlated among them (P < 0.01) and all were negatively correlated with grain weight (P < 0.01). Based on the epidemiological parameters used, cultivars that showed resistance to WB were Urubó, San Pablo, and AN-120, which were previously reported to have effective resistance against the disease under field conditions. The information generated could help breeding programs to make technical decisions about relevant epidemiological parameters to consider prior to cultivar release.
Collapse
Affiliation(s)
- M Fernández-Campos
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - C Góngora-Canul
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - S Das
- Uttar Banga Krishi Viswavidyalaya, Pundibari, Coochbehar, West Bengal 736165, India
| | - M R Kabir
- Bangladesh Wheat and Maize Research Institute, Nishapur, Dinajpur, Bangladesh
| | - B Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - C D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
58
|
Gongora-Canul C, Salgado JD, Singh D, Cruz AP, Cotrozzi L, Couture J, Rivadeneira MG, Cruppe G, Valent B, Todd T, Poland J, Cruz CD. Temporal Dynamics of Wheat Blast Epidemics and Disease Measurements Using Multispectral Imagery. PHYTOPATHOLOGY 2020; 110:393-405. [PMID: 31532351 DOI: 10.1094/phyto-08-19-0297-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat blast is a devastating disease caused by the Triticum pathotype of Magnaporthe oryzae. M. oryzae Triticum is capable of infecting leaves and spikes of wheat. Although symptoms of wheat spike blast (WSB) are quite distinct in the field, symptoms on leaves (WLB) are rarely reported because they are usually inconspicuos. Two field experiments were conducted in Bolivia to characterize the change in WLB and WSB intensity over time and determine whether multispectral imagery can be used to accurately assess WSB. Disease progress curves (DPCs) were plotted from WLB and WSB data, and regression models were fitted to describe the nature of WSB epidemics. WLB incidence and severity changed over time; however, the mean WLB severity was inconspicuous before wheat began spike emergence. Overall, both Gompertz and logistic models helped to describe WSB intensity DPCs fitting classic sigmoidal shape curves. Lin's concordance correlation coefficients were estimated to measure agreement between visual estimates and digital measurements of WSB intensity and to estimate accuracy and precision. Our findings suggest that the change of wheat blast intensity in a susceptible host population over time does not follow a pattern of a monocyclic epidemic. We have also demonstrated that WSB severity can be quantified using a digital approach based on nongreen pixels. Quantification was precise (0.96 < r> 0.83) and accurate (0.92 < ρ > 0.69) at moderately low to high visual WSB severity levels. Additional sensor-based methods must be explored to determine their potential for detection of WLB and WSB at earlier stages.
Collapse
Affiliation(s)
- C Gongora-Canul
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - J D Salgado
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, U.S.A
| | - D Singh
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - A P Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - L Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - J Couture
- Departments of Entomology and Forestry and Natural Resources and Center for Plant Biology, Purdue University, 901 W. State St., West Lafayette, IN 47907, U.S.A
| | - M G Rivadeneira
- Centro de Investigación Agrícola Tropical, Estación Experimental Agrícola de Saavedra-EEAS, Santa Cruz, Bolivia
| | - G Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - B Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - T Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - J Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - C D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
59
|
Cruppe G, Cruz CD, Peterson G, Pedley K, Asif M, Fritz A, Calderon L, Lemes da Silva C, Todd T, Kuhnem P, Singh PK, Singh RP, Braun HJ, Barma NCD, Valent B. Novel Sources of Wheat Head Blast Resistance in Modern Breeding Lines and Wheat Wild Relatives. PLANT DISEASE 2020; 104:35-43. [PMID: 31660799 DOI: 10.1094/pdis-05-19-0985-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Wheat head blast (WHB), caused by the fungus Magnaporthe oryzae pathotype triticum, is a devastating disease affecting South America and South Asia. Despite 30 years of intensive effort, the 2NVS translocation from Aegilops ventricosa contains the only useful source of resistance to WHB effective against M. oryzae triticum isolates. The objective of this study was to identify non-2NVS sources of resistance to WHB among elite cultivars, breeding lines, landraces, and wild-relative accessions. Over 780 accessions were evaluated under field and greenhouse conditions in Bolivia, greenhouse conditions in Brazil, and at two biosafety level-3 laboratories in the United States. The M. oryzae triticum isolates B-71 (2012), 008 (2015), and 16MoT001 (2016) were used for controlled experiments, while isolate 008 was used for field experiments. Resistant and susceptible checks were included in all experiments. Under field conditions, susceptible spreaders were inoculated at the tillering stage to guarantee sufficient inoculum. Disease incidence and severity were evaluated as the average rating for each 1-m-row plot. Under controlled conditions, heads were inoculated after full emergence and individually rated for percentage of diseased spikelets. The diagnostic marker Ventriup-LN2 was used to test for the presence of the 2NVS translocation. Four non-2NVS spring wheat International Maize and Wheat Improvement Center breeding lines (CM22, CM49, CM52, and CM61) and four wheat wild-relatives (A. tauschii TA10142, TA1624, TA1667, and TA10140) were identified as resistant (<5% of severity) or moderately resistant (5 to <25% severity) to WHB. Experiments conducted at the seedling stage showed little correlation with disease severity at the head stage. M. oryzae triticum isolate 16MoT001 was significantly more aggressive against 2NVS-based varieties. The low frequency of WHB resistance and the increase in aggressiveness of newer M. oryzae triticum isolates highlight the threat that the disease poses to wheat production worldwide and the urgent need to identify and characterize new resistance genes that can be used in breeding for durably resistant varieties.
Collapse
Affiliation(s)
- Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Christian D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Gary Peterson
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702, U.S.A
| | - Kerry Pedley
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702, U.S.A
| | - Mohammad Asif
- Heartland Plant Innovations, Manhattan, KS 66506, U.S.A
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Lidia Calderon
- Asociacion de Productores de Oleaginosas y Trigo, Santa Cruz de la Sierra, Bolivia
| | | | - Tim Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Paulo Kuhnem
- Biotrigo Genetica, Passo Fundo, Rio Grande do Sul 99052, Brazil
| | - Pawan K Singh
- International Maize and Wheat Improvement Center, El Batan, Texcoco 56237, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center, El Batan, Texcoco 56237, Mexico
| | - Hans-Joachim Braun
- International Maize and Wheat Improvement Center, El Batan, Texcoco 56237, Mexico
| | - Naresh C D Barma
- Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
60
|
Aucique-Pérez CE, Resende RS, Neto LBC, Dornelas F, DaMatta FM, Rodrigues FÁ. Picolinic acid spray stimulates the antioxidative metabolism and minimizes impairments on photosynthesis on wheat leaves infected by Pyricularia oryzae. PHYSIOLOGIA PLANTARUM 2019; 167:628-644. [PMID: 30628091 DOI: 10.1111/ppl.12917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 05/26/2023]
Abstract
Fungal pathogens produce toxins that are important for their pathogenesis and/or aggressiveness towards their hosts. Picolinic acid (PA), a non-host selective toxin, causes lesions on rice leaves resembling those originated from Pyricularia oryzae infection. Considering that non-host selective toxins can be useful for plant diseases control, this study investigated whether the foliar spray with PA on wheat (Triticum aestivum L.) plants, in a non-phytotoxic concentration, could increase their resistance to blast, stimulate the anti-oxidative metabolism, and minimize alterations in photosynthesis. The PA spray at concentrations greater than 0.1 mg ml-1 caused foliar lesions, compromised the photosynthesis and was linked with greater accumulation of hydrogen peroxide (H2 O2 ) and superoxide anion radical (O2 •- ). Fungal mycelial growth, conidia production and germination decreased by PA at 0.3 mg ml-1 . Blast severity was significantly reduced by 59 and 23%, respectively, at 72 and 96 h after inoculation for plants sprayed with PA (0.1 mg ml-1 ) at 24 h before fungal inoculation compared to non-sprayed plants. Reduction on blast symptoms was linked with increases on ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.8.1.7), glutathione-S-transferase (EC 2.5.1.18), peroxidase (EC 1.11.1.7), and superoxide dismutase (EC 1.15.1.1) activities, lower H2 O2 and O2 •- accumulation, reduced malondialdehyde production as well as less impairments to the photosynthetic apparatus. A more efficient antioxidative metabolism that rapidly scavenges the reactive oxygen species generated during P. oryzae infection, without dramatically decreasing the photosynthetic performance, was a remarkable effect obtained with PA spray.
Collapse
Affiliation(s)
- Carlos Eduardo Aucique-Pérez
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
- Department of Plant Biology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Renata Sousa Resende
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Lara Beatriz Cruz Neto
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Fernanda Dornelas
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Fábio Murilo DaMatta
- Department of Plant Biology, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - Fabrício Ávila Rodrigues
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| |
Collapse
|
61
|
Zhang P, Li X, Gebrewahid TW, Liu H, Xia X, He Z, Li Z, Liu D. QTL Mapping of Adult-Plant Resistance to Leaf and Stripe Rust in Wheat Cross SW 8588/Thatcher using the Wheat 55K SNP Array. PLANT DISEASE 2019; 103:3041-3049. [PMID: 31613193 DOI: 10.1094/pdis-02-19-0380-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Wheat leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) cause large production losses in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) for resistance to leaf rust and stripe rust in a recombinant inbred line population derived from a cross between wheat cultivars SW 8588 and Thatcher. The population and parents were genotyped with the Wheat 55K SNP Array and SSR markers and phenotyped for leaf rust severity at Zhoukou in Henan Province and Baoding in Hebei Province. Stripe rust responses were also evaluated at Chengdu in Sichuan Province, and at Baoding. Seven and six QTL were detected for resistance to leaf rust and stripe rust, respectively. Four QTL on chromosomes 1BL, 2AS, 5AL, and 7BL conferred resistance to both rusts. The QTL on 1BL and 2AS were identified as Lr46/Yr29 and Lr37/Yr17, respectively. QLr.hebau-2DS from Thatcher, identified as Lr22b that was previously thought to be ineffective in China, contributed a large effect for leaf rust resistance. QLr.hebau-5AL/QYr.hebau-5AL, QLr.hebau-3BL, QLr.hebau-6DS, QYr.hebau-4BS, and QYr.hebau-6DS are likely to be new QTL, but require further validation. Kompetitive allele-specific PCR (KASP) markers for QLr.hebau-2DS and QLr.hebau-5AL/QYr.hebau-5AL were successfully developed and validated in a diverse wheat panel from Sichuan Province, indicating their usefulness under different genetic backgrounds. These QTL and their closely linked SNP and SSR markers will be useful for fine mapping, candidate gene discovery, and marker-assisted selection in breeding for durable resistance to both leaf and stripe rusts.
Collapse
Affiliation(s)
- Peipei Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Takele-Weldu Gebrewahid
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Agriculture, Aksum University, Shire-Indaslassie, Tigray 314, Ethiopia
| | - Hexing Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Zaifeng Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
62
|
Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 2019; 51:1530-1539. [DOI: 10.1038/s41588-019-0496-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023]
|
63
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 PMCID: PMC6741851 DOI: 10.1371/journal.pgen.1008272] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
64
|
Mottaleb KA, Govindan V, Singh PK, Sonder K, He X, Singh RP, Joshi AK, Barma NC, Kruseman G, Erenstein O. Economic benefits of blast-resistant biofortified wheat in Bangladesh: The case of BARI Gom 33. CROP PROTECTION (GUILDFORD, SURREY) 2019; 123:45-58. [PMID: 31481821 PMCID: PMC6686726 DOI: 10.1016/j.cropro.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/29/2023]
Abstract
The first occurrence of wheat blast in 2016 threatened Bangladesh's already precarious food security situation. The Bangladesh Agricultural Research Institute (BARI), together with the International Maize and Wheat Improvement Center (CIMMYT) developed and released the wheat variety BARI Gom 33 that is resistant to wheat blast and other common diseases. The new variety provides a 5-8% yield gain over the available popular varieties, as well as being zinc enriched. This study examines the potential economic benefits of BARI Gom 33 in Bangladesh. First, applying a climate analogue model, this study identified that more than 55% of the total wheat-growing area in Bangladesh (across 45 districts) is vulnerable to wheat blast. Second, applying an ex-ante impact assessment framework, this study shows that with an assumed cumulative adoption starting from 2019-20 and increasing to 30% by 2027-28, the potential economic benefits of the newly developed wheat variety far exceeds its dissemination cost by 2029-30. Even if dissemination of the new wheat variety is limited to only the ten currently blast-affected districts, the yearly average net benefits could amount to USD 0.23-1.6 million. Based on the findings, international funder agencies are urged to support the national system in scaling out the new wheat variety and wheat research in general to ensure overall food security in Bangladesh and South Asia.
Collapse
Affiliation(s)
- Khondoker A. Mottaleb
- Socioeconomics Program, CIMMYT (International Maize and Wheat Improvement Center), Carretera México-Veracruz Km. 45, El Batán, Texcoco, Mexico, C.P. 56237
| | | | | | - Kai Sonder
- Geographical Information System Unit, CIMMYT Mexico
| | - Xinyao He
- Geographical Information System Unit, CIMMYT Mexico
| | - Ravi P. Singh
- Bread Wheat Improvement, Global Wheat Program, CIMMYT, Mexico
| | - Arun K. Joshi
- CIMMYT- Borlaug Institute for South Asia (BISA), NASC Complex, New Delhi, India
| | | | - Gideon Kruseman
- Ex ante and Foresight Specialist, Socioeconomics Program, CIMMYT, Mexico
| | | |
Collapse
|
65
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 DOI: 10.1101/359455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 05/26/2023] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
66
|
Kolmer JA. Virulence of Puccinia triticina, the Wheat Leaf Rust Fungus, in the United States in 2017. PLANT DISEASE 2019; 103:2113-2120. [PMID: 31161933 DOI: 10.1094/pdis-09-18-1638-sr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Samples of wheat leaves infected with the leaf rust fungus, Puccinia triticina, were obtained in 2017 from agricultural experiment station plots, demonstration plots, and farm fields in the Great Plains, the Ohio Valley, the southeastern states, California, and Washington in order to determine the prevalent virulence phenotypes present in the United States. A total of 65 virulence phenotypes were identified among the 469 single uredinial isolates that were tested on 20 near-isogenic lines of Thatcher wheat that differ for leaf rust resistance genes. Virulence phenotypes MBTNB at 11.3% of the overall population, and MCTNB at 7.0%, were the first and third most common phenotypes. Both phenotypes were found mostly in the southeastern states and Ohio Valley region. Phenotype TFTSB at 10.9% was the second most common phenotype and was found mostly in southern Texas. Virulence to leaf rust resistance gene Lr39, which is present in hard red winter wheat cultivars, was highest in the Great Plains region. Virulence to Lr11 and Lr18, which are present in soft red winter wheat cultivars, was highest in the southeastern states and Ohio Valley region. Virulence to Lr21, which is present in hard red spring wheat cultivars, was highest in the northern Great Plains region. The predominate P. triticina phenotypes from the soft red winter wheat regions of the southeastern states and Ohio Valley area differed from those in the hard red winter and hard red spring wheat areas of the Great Plains region. Collections from Washington had unique virulence phenotypes that had not been previously detected.
Collapse
Affiliation(s)
- J A Kolmer
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| |
Collapse
|
67
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
68
|
Mirzaghaderi G, Mason AS. Broadening the bread wheat D genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1295-1307. [PMID: 30739154 DOI: 10.1007/s00122-019-03299-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. In this review, we discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. The D genome of allohexaploid bread wheat (Triticum aestivum, 2n = AABBDD) is the least diverse of the three wheat genomes and is unarguably less diverse than that of diploid progenitor Aegilops tauschii (2n = DD). Useful genetic variation and phenotypic traits also exist within each of the wheat group species containing a copy of the D genome: allopolyploid Aegilops species Ae. cylindrica (2n = DcDcCcCc), Ae. crassa 4x (2n = D1D1XcrXcr), Ae. crassa 6x (2n = D1D1XcrXcrDcrDcr), Ae. ventricosa (2n = DvDvNvNv), Ae. vavilovii (2n = D1D1XcrXcrSvSv) and Ae. juvenalis (2n = D1D1XcrXcrUjUj). Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. Some of these D genomes appear to be modified relative to the bread wheat and Ae. tauschii D genomes, and others present in the allopolyploids may also contain useful variation as a result of adaptation to an allopolyploid, multi-genome environment. We summarise the genetic relationships, karyotypic variation and phenotypic traits known to be present in each of the D genome species that could be of relevance for bread wheat improvement and discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. Better understanding of factors controlling chromosome inheritance and recombination in wheat group interspecific hybrids, as well as effective utilisation of new and developing genetics and genomics technologies, have great potential to improve the agronomic potential of the bread wheat D genome.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
69
|
Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:394. [PMID: 31019521 DOI: 10.3389/fpls.2019.00394/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/14/2019] [Indexed: 05/24/2023]
Abstract
Novel high-throughput phenotyping (HTP) approaches are needed to advance the understanding of genotype-to-phenotype and accelerate plant breeding. The first generation of HTP has examined simple spectral reflectance traits from images and sensors but is limited in advancing our understanding of crop development and architecture. Lodging is a complex trait that significantly impacts yield and quality in many crops including wheat. Conventional visual assessment methods for lodging are time-consuming, relatively low-throughput, and subjective, limiting phenotyping accuracy and population sizes in breeding and genetics studies. Here, we demonstrate the considerable power of unmanned aerial systems (UAS) or drone-based phenotyping as a high-throughput alternative to visual assessments for the complex phenological trait of lodging, which significantly impacts yield and quality in many crops including wheat. We tested and validated quantitative assessment of lodging on 2,640 wheat breeding plots over the course of 2 years using differential digital elevation models from UAS. High correlations of digital measures of lodging to visual estimates and equivalent broad-sense heritability demonstrate this approach is amenable for reproducible assessment of lodging in large breeding nurseries. Using these high-throughput measures to assess the underlying genetic architecture of lodging in wheat, we applied genome-wide association analysis and identified a key genomic region on chromosome 2A, consistent across digital and visual scores of lodging. However, these associations accounted for a very minor portion of the total phenotypic variance. We therefore investigated whole genome prediction models and found high prediction accuracies across populations and environments. This adequately accounted for the highly polygenic genetic architecture of numerous small effect loci, consistent with the previously described complex genetic architecture of lodging in wheat. Our study provides a proof-of-concept application of UAS-based phenomics that is scalable to tens-of-thousands of plots in breeding and genetic studies as will be needed to uncover the genetic factors and increase the rate of gain for complex traits in crop breeding.
Collapse
Affiliation(s)
- Daljit Singh
- Interdepartmental Genetics, Kansas State University, Manhattan, KS, United States
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Xu Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
| | - Liangliang Gao
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Muhammad Noor
- Department of Agriculture, Hazara University, Mansehra, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center, Islamabad, Pakistan
| | - Ravi P Singh
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
70
|
Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:394. [PMID: 31019521 PMCID: PMC6459080 DOI: 10.3389/fpls.2019.00394] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/14/2019] [Indexed: 05/19/2023]
Abstract
Novel high-throughput phenotyping (HTP) approaches are needed to advance the understanding of genotype-to-phenotype and accelerate plant breeding. The first generation of HTP has examined simple spectral reflectance traits from images and sensors but is limited in advancing our understanding of crop development and architecture. Lodging is a complex trait that significantly impacts yield and quality in many crops including wheat. Conventional visual assessment methods for lodging are time-consuming, relatively low-throughput, and subjective, limiting phenotyping accuracy and population sizes in breeding and genetics studies. Here, we demonstrate the considerable power of unmanned aerial systems (UAS) or drone-based phenotyping as a high-throughput alternative to visual assessments for the complex phenological trait of lodging, which significantly impacts yield and quality in many crops including wheat. We tested and validated quantitative assessment of lodging on 2,640 wheat breeding plots over the course of 2 years using differential digital elevation models from UAS. High correlations of digital measures of lodging to visual estimates and equivalent broad-sense heritability demonstrate this approach is amenable for reproducible assessment of lodging in large breeding nurseries. Using these high-throughput measures to assess the underlying genetic architecture of lodging in wheat, we applied genome-wide association analysis and identified a key genomic region on chromosome 2A, consistent across digital and visual scores of lodging. However, these associations accounted for a very minor portion of the total phenotypic variance. We therefore investigated whole genome prediction models and found high prediction accuracies across populations and environments. This adequately accounted for the highly polygenic genetic architecture of numerous small effect loci, consistent with the previously described complex genetic architecture of lodging in wheat. Our study provides a proof-of-concept application of UAS-based phenomics that is scalable to tens-of-thousands of plots in breeding and genetic studies as will be needed to uncover the genetic factors and increase the rate of gain for complex traits in crop breeding.
Collapse
Affiliation(s)
- Daljit Singh
- Interdepartmental Genetics, Kansas State University, Manhattan, KS, United States
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Xu Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
| | - Liangliang Gao
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Muhammad Noor
- Department of Agriculture, Hazara University, Mansehra, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center, Islamabad, Pakistan
| | - Ravi P. Singh
- Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
71
|
Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Aucique‐Pérez CE, Moreira SI, Croll D, Alves E, de Carvalho G, Maciel JLN, McDonald BA. Wheat blast: from its origins in South America to its emergence as a global threat. MOLECULAR PLANT PATHOLOGY 2019; 20:155-172. [PMID: 30187616 PMCID: PMC6637873 DOI: 10.1111/mpp.12747] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat blast was first reported in Brazil in 1985. It spread rapidly across the wheat cropping areas of Brazil to become the most important biotic constraint on wheat production in the region. The alarming appearance of wheat blast in Bangladesh in 2016 greatly increased the urgency to understand this disease, including its causes and consequences. Here, we summarize the current state of knowledge of wheat blast and aim to identify the most important gaps in our understanding of the disease. We also propose a research agenda that aims to improve the management of wheat blast and limit its threat to global wheat production.
Collapse
Affiliation(s)
- Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
- Present address:
Department of Plant PathologyUniversity of ArkansasARUSA
| | - Fabrício Ávila Rodrigues
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Jonas Alberto Rios
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Carlos Eduardo Aucique‐Pérez
- Department of Plant Pathology, Lab. of Host‐Parasite InteractionUFV Federal University of ViçosaViçosaMinas GeraisBrazil36570-000
| | - Silvino Intra Moreira
- Department of Plant PathologyUFLA Federal University of LavrasLavrasMinas GeraisBrazil37200-000
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerlandCH-2000
| | - Eduardo Alves
- Department of Plant PathologyUFLA Federal University of LavrasLavrasMinas GeraisBrazil37200-000
| | - Giselle de Carvalho
- Department of Crop Protection, Agricultural Engineering, and SoilsUNESP University of São Paulo StateIlha Solteira CampusSão PauloBrazil15385-000
| | - João Leodato Nunes Maciel
- Brazilian Agriculture Research Corporation, Embrapa Wheat (Embrapa Trigo)Passo FundoRio Grande do SulBrazil99050-970
| | - Bruce Alan McDonald
- Plant Pathology Group, Institute of Integrative BiologySwiss Federal Institute of Technology, ETH ZurichZurichSwitzerlandCH-8092
| |
Collapse
|
72
|
Islam MT, Kim KH, Choi J. Wheat Blast in Bangladesh: The Current Situation and Future Impacts. THE PLANT PATHOLOGY JOURNAL 2019; 35:1-10. [PMID: 30828274 PMCID: PMC6385656 DOI: 10.5423/ppj.rw.08.2018.0168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/14/2018] [Indexed: 05/20/2023]
Abstract
Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.
Collapse
Affiliation(s)
- M. Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706,
Bangladesh
| | - Kwang-Hyung Kim
- Department of Climate Service and Research, APEC Climate Center, Busan 48058,
Korea
| | - Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012,
Korea
| |
Collapse
|
73
|
Valent B, Farman M, Tosa Y, Begerow D, Fournier E, Gladieux P, Islam MT, Kamoun S, Kemler M, Kohn LM, Lebrun M, Stajich JE, Talbot NJ, Terauchi R, Tharreau D, Zhang N. Pyricularia graminis-tritici is not the correct species name for the wheat blast fungus: response to Ceresini et al. (MPP 20:2). MOLECULAR PLANT PATHOLOGY 2019; 20:173-179. [PMID: 30697917 PMCID: PMC6637902 DOI: 10.1111/mpp.12778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Barbara Valent
- Department of Plant PathologyKansas State UniversityManhattanKS 66506US
| | - Mark Farman
- Department of Plant PathologyUniversity of KentuckyLexingtonKY 40546USA
| | - Yukio Tosa
- Department of Agrobioscience, Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Dominik Begerow
- Geobotany, Department of Evolution and Biodiversity of PlantsRuhr‐University Bochum44801 BochumGermany
| | - Elisabeth Fournier
- UMR BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro34398 MontpellierFrance
| | - Pierre Gladieux
- UMR BGPI, Université de Montpellier, INRA, CIRAD, Montpellier SupAgro34398 MontpellierFrance
| | - M. Tofazzal Islam
- Department of BiotechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur 1706Bangladesh
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwich NR4 7UHUK
| | - Martin Kemler
- Geobotany, Department of Evolution and Biodiversity of PlantsRuhr‐University Bochum44801 BochumGermany
| | - Linda M. Kohn
- Department of BiologyUniversity of TorontoMississaugaON L5L 1C6Canada
| | | | - Jason E. Stajich
- Department of Microbiology & Plant PathologyUniversity of CaliforniaRiversideCA 92521USA
| | - Nicholas J. Talbot
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwich NR4 7UHUK
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research CenterIwate 024‐0003Japan
- Laboratory of Crop Evolution, Graduate School of AgricultureKyoto UniversityKyoto 617‐0001Japan
| | - Didier Tharreau
- CIRAD, UMR BGPIF‐34398 MontpellierFrance
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgroF‐34398 MontpellierFrance
| | - Ning Zhang
- Department of Plant BiologyRutgers UniversityNew BrunswickNJ 08901USA
| |
Collapse
|
74
|
Wang S, Asuke S, Vy TTP, Inoue Y, Chuma I, Win J, Kato K, Tosa Y. A New Resistance Gene in Combination with Rmg8 Confers Strong Resistance Against Triticum Isolates of Pyricularia oryzae in a Common Wheat Landrace. PHYTOPATHOLOGY 2018; 108:1299-1306. [PMID: 29767554 DOI: 10.1094/phyto-12-17-0400-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The wheat blast fungus (Triticum pathotype of Pyricularia oryzae) first arose in Brazil in 1985 and has recently spread to Asia. Resistance genes against this new pathogen are very rare in common wheat populations. We screened 520 local landraces of common wheat collected worldwide with Br48, a Triticum isolate collected in Brazil, and found a highly resistant, unique accession, GR119. When F2 seedlings derived from a cross between GR119 and Chinese Spring (CS, susceptible control) were inoculated with Br48, resistant and susceptible seedlings segregated in a 15:1 ratio, suggesting that GR119 carries two resistance genes. When the F2 seedlings were inoculated with Br48ΔA8 carrying a disrupted allele of AVR-Rmg8 (an avirulence gene corresponding to a previously reported resistance gene, Rmg8), however, the segregation fitted a 3:1 ratio. These results suggest that one of the two genes in GR119 was Rmg8. The other, new gene was tentatively designated as RmgGR119. GR119 was highly resistant to all Triticum isolates tested. Spikes of GR119 were highly resistant to Br48, moderately resistant to Br48ΔA8 and a hybrid culture carrying avr-Rmg8 (nonfunctional allele), and highly resistant to its transformant carrying AVR-Rmg8. The strong resistance of GR119 was attributed to the combined effects of Rmg8 and RmgGR119.
Collapse
Affiliation(s)
- Shizhen Wang
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Soichiro Asuke
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Trinh Thi Phuong Vy
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshihiro Inoue
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Izumi Chuma
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Joe Win
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Kenji Kato
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yukio Tosa
- First, second, third, fourth, fifth, and eighth authors: Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; sixth author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; and seventh author: Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
75
|
Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Eduardo Aucique-Pérez C, Moreira SI, Alves E, Croll D, Maciel JLN. Wheat Blast: Past, Present, and Future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:427-456. [PMID: 29975608 DOI: 10.1146/annurev-phyto-080417-050036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by Pyricularia graminis-tritici ( Pygt), a species genetically distinct from the Pyricularia oryzae species that causes rice blast. Pygt has high genetic and phenotypic diversity and a broad host range that enables it to move back and forth between wheat and other grass hosts. Recombination is thought to occur mainly on the other grass hosts, giving rise to the highly diverse Pygt population observed in wheat fields. This review brings together past and current knowledge about the history, etiology, epidemiology, physiology, and genetics of wheat blast and discusses the future need for integrated management strategies. The most urgent current need is to strengthen quarantine and biosafety regulations to avoid additional spread of the pathogen to disease-free countries. International breeding efforts will be needed to develop wheat varieties with more durable resistance.
Collapse
Affiliation(s)
- Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Fabrício Ávila Rodrigues
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jonas Alberto Rios
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Eduardo Aucique-Pérez
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Silvino Intra Moreira
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - João Leodato Nunes Maciel
- Embrapa Wheat (Embrapa Trigo), Brazilian Agricultural Research Corporation, Passo 99050-970, Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
76
|
Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1405-1422. [PMID: 29589041 PMCID: PMC6004277 DOI: 10.1007/s00122-018-3086-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/12/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat. Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT's (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5 × 107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
Collapse
Affiliation(s)
- Philomin Juliana
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Jesse A Poland
- Wheat Genetics Resource Center, Department of Plant Pathology and Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Gary C Bergstrom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230, Chapingo, Edo. de México, Mexico
| | - Sridhar Bhavani
- CIMMYT, ICRAF house, United Nations Avenue, Gigiri, Village Market, Nairobi, 00621, Kenya
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, DF, Mexico
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
77
|
Figueroa M, Hammond‐Kosack KE, Solomon PS. A review of wheat diseases-a field perspective. MOLECULAR PLANT PATHOLOGY 2018; 19:1523-1536. [PMID: 29045052 PMCID: PMC6638159 DOI: 10.1111/mpp.12618] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 05/19/2023]
Abstract
Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant PathologyStakman‐Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. PaulMN 55108USA
| | - Kim E. Hammond‐Kosack
- Department of Biointeractions and Crop ProtectionRothamsted Research, West CommonHarpendenHertfordshire AL5 2JQUK
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
78
|
Threat of wheat blast to South Asia's food security: An ex-ante analysis. PLoS One 2018; 13:e0197555. [PMID: 29782528 PMCID: PMC5962063 DOI: 10.1371/journal.pone.0197555] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/06/2018] [Indexed: 11/23/2022] Open
Abstract
New biotic stresses have emerged around the globe over the last decades threatening food safety and security. In 2016, scientists confirmed the presence of the devastating wheat-blast disease in Bangladesh, South Asia–its first occurrence outside South America. Severely blast-affected wheat fields had their grain yield wiped out. This poses a severe threat to food security in a densely-populated region with millions of poor inhabitants where wheat is a major staple crop and per capita wheat consumption has been increasing. As an ex ante impact assessment, this study examined potential wheat-blast scenarios in Bangladesh, India, and Pakistan. Based on the agro-climatic conditions in the epicenter, where the disease was first identified in Bangladesh in 2016, this study identified the correspondingly vulnerable areas in India, Pakistan and Bangladesh amounting to 7 million ha. Assuming a conservative scenario of 5–10% for blast-induced wheat production loss, this study estimated the annual potential wheat loss across the sampled countries to be 0.89–1.77 million tons, equivalent to USD 132–264 million. Such losses further threaten an already-precarious national food security, putting pressure on wheat imports and wheat prices. The study is a call for action to tackle the real wheat-blast threat in South Asia.
Collapse
|
79
|
Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, Chuma I, Tosa Y. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. MOLECULAR PLANT PATHOLOGY 2018; 19:1252-1256. [PMID: 28846191 PMCID: PMC6638012 DOI: 10.1111/mpp.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 05/11/2023]
Abstract
Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.
Collapse
Affiliation(s)
- Vu Lan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yoshihiro Inoue
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
- Present address:
Graduate School of AgricultureKyoto UniversityKyoto 606‐8224Japan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | | | - Nguyen Tuan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Shizhen Wang
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Izumi Chuma
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yukio Tosa
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| |
Collapse
|
80
|
Sadat MA, Choi J. Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production. THE PLANT PATHOLOGY JOURNAL 2017; 33:103-108. [PMID: 28381956 PMCID: PMC5378430 DOI: 10.5423/ppj.rw.09.2016.0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 05/11/2023]
Abstract
World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world's largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.
Collapse
Affiliation(s)
| | - Jaehyuk Choi
- Corresponding author: Phone) +82-32-835-8242, FAX) +82-32-835-0754, E-mail)
| |
Collapse
|
81
|
|
82
|
Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJúnior A, Castroagudín VL, Reges JTDA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 2016; 14:84. [PMID: 27716181 PMCID: PMC5047043 DOI: 10.1186/s12915-016-0309-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. RESULTS Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. CONCLUSION Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.
Collapse
Affiliation(s)
- M Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Pierre Gladieux
- INRA, UMR 385 Biologie et génétique des interactions plantes-pathogènes BGPI, Montpellier, France
| | - Darren M Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | | | - Pallab Bhattacharjee
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Shaid Hossain
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Dipali Rani Gupta
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Mahbubur Rahman
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Golam Mahboob
- Argo-Environmental Remote Sensing and Modeling Lab, Bangladesh Agricultural Research Institute, Joydebpur 1701, Gazipur, Bangladesh
| | - Nicola Cook
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Moin U Salam
- Directorate of Grains Industry, Department of Agriculture and Food Western Australia (DAFWA), 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Musrat Zahan Surovy
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - João Leodato Nunes Maciel
- Brazilian Agricultural Research Enterprise - EMBRAPA Wheat/Trigo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Antonio NhaniJúnior
- Brazilian Agricultural Research Enterprise - EMBRAPA Wheat/Trigo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Rural Engineering, and Soil Science, University of São Paulo State - UNESP, IlhaSolteira Campus, São Paulo, Brazil
| | - Juliana T de Assis Reges
- Department of Crop Protection, Rural Engineering, and Soil Science, University of São Paulo State - UNESP, IlhaSolteira Campus, São Paulo, Brazil
| | - Paulo Cezar Ceresini
- Department of Crop Protection, Rural Engineering, and Soil Science, University of São Paulo State - UNESP, IlhaSolteira Campus, São Paulo, Brazil
| | - Sebastien Ravel
- CIRAD, UMR 385 Biologie et génétique des interactions plantes-pathogènes BGPI, Montpellier, France
| | - Ronny Kellner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Elisabeth Fournier
- INRA, UMR 385 Biologie et génétique des interactions plantes-pathogènes BGPI, Montpellier, France
| | - Didier Tharreau
- CIRAD, UMR 385 Biologie et génétique des interactions plantes-pathogènes BGPI, Montpellier, France
| | - Marc-Henri Lebrun
- INRA, UMR 1290 Biologie et Gestion des Risques en agriculture BIOGER, Thiverval-Grignon, France
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Timothy Stitt
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniel Swan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicholas J Talbot
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Diane G O Saunders
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
83
|
Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandes JM, Bockus WW, Valent B, Stack JP. Climate Suitability for Magnaporthe oryzae Triticum Pathotype in the United States. PLANT DISEASE 2016; 100:1979-1987. [PMID: 30683008 DOI: 10.1094/pdis-09-15-1006-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat blast, caused by the Triticum pathotype of Magnaporthe oryzae, is an emerging disease considered to be a limiting factor to wheat production in various countries. Given the importance of wheat blast as a high-consequence plant disease, weather-based infection models were used to estimate the probabilities of M. oryzae Triticum establishment and wheat blast outbreaks in the United States. The models identified significant disease risk in some areas. With the threshold levels used, the models predicted that the climate was adequate for maintaining M. oryzae Triticum populations in 40% of winter wheat production areas of the United States. Disease outbreak threshold levels were only reached in 25% of the country. In Louisiana, Mississippi, and Florida, the probability of years suitable for outbreaks was greater than 70%. The models generated in this study should provide the foundation for more advanced models in the future, and the results reported could be used to prioritize research efforts regarding the biology of M. oryzae Triticum and the epidemiology of the wheat blast disease.
Collapse
Affiliation(s)
- Christian D Cruz
- Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Roger D Magarey
- Center for IPM, North Carolina State University, Raleigh 27606
| | | | - Glenn A Fowler
- United States Department of Agriculture-Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, Plant Epidemiology and Risk Analysis Laboratory, Raleigh, NC 27606
| | | | | | | | - James P Stack
- Department of Plant Pathology, Kansas State University
| |
Collapse
|
84
|
Schönhofen A, Hazard B, Zhang X, Dubcovsky J. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content. JOURNAL OF PLANT REGISTRATIONS 2016; 10:200-205. [PMID: 27818720 PMCID: PMC5091815 DOI: 10.3198/jpr2015.10.0066crg] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/12/2016] [Indexed: 05/03/2023]
Abstract
Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaploid wheat cultivar Lassik. Four mutant combinations were generated: SBEIIa/b-AB (Reg. No. GP-997, PI 675644); SBEIIa/b-A, SBEIIa-D (Reg. No. GP-998, PI 675645); SBEIIa/b-B, SBEIIa-D (Reg. No. GP-999, PI 675646); and SBEIIa/b-AB, SBEIIa-D (Reg. No. GP-1000, PI 675647). The SBEII mutant lines were compared with a wild-type control in a greenhouse and field experiment. The quintuple mutant line (SBEIIa/b-AB, SBEIIa-D) presented significant increases in both amylose (51% greenhouse; 63% field) and resistant starch (947% greenhouse; 1057% field) relative to the control. A decrease in total starch content (7.8%) was observed in the field experiment. The quintuple mutant also differed in starch viscosity parameters. Registration of the hexaploid wheat SBEII-mutant lines by University of California, Davis can help expedite the development of common wheat cultivars with increased amylose and resistant starch content.
Collapse
Affiliation(s)
| | - Brittany Hazard
- Dep. of Plant Sciences, Univ. of California, Davis, CA 95616
| | - Xiaoqin Zhang
- Dep. of Plant Sciences, Univ. of California, Davis, CA 95616
| | - Jorge Dubcovsky
- Dep. of Plant Sciences, Univ. of California, Davis, CA 95616
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|