51
|
Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 2019; 28:1031-1040. [PMID: 31623469 DOI: 10.1080/13543784.2019.1681967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Brain swelling due to edema formation is a major cause of neurological deterioration and death in patients with large hemispheric infarction (LHI) and severe traumatic brain injury (TBI), especially contusion-TBI. Preclinical studies have shown that SUR1-TRPM4 channels play a critical role in edema formation and brain swelling in LHI and TBI. Glibenclamide, a sulfonylurea drug and potent inhibitor of SUR1-TRPM4, was reformulated for intravenous injection, known as BIIB093.Areas covered: We discuss the findings from Phase 2 clinical trials of BIIB093 in patients with LHI (GAMES-Pilot and GAMES-RP) and from a small Phase 2 clinical trial in patients with TBI. For the GAMES trials, we review data on objective biological variables, adjudicated edema-related endpoints, functional outcomes, and mortality which, despite missing the primary endpoint, supported the initiation of a Phase 3 trial in LHI (CHARM). For the TBI trial, we review data on MRI measures of edema and the initiation of a Phase 2 trial in contusion-TBI (ASTRAL).Expert opinion: Emerging clinical data show that BIIB093 has the potential to transform our management of patients with LHI, contusion-TBI and other conditions in which swelling leads to neurological deterioration and death.
Collapse
Affiliation(s)
- Melissa Pergakis
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seemant Chaturvedi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn A Cronin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin N Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
52
|
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler Thromb Vasc Biol 2019; 39:2240-2247. [PMID: 31510792 DOI: 10.1161/atvbaha.119.312816] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Jianming Xiang
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Svetlana M Stamatovic
- Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Ya Hua
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Guohua Xi
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Michael M Wang
- Neurology (M.M.W.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Richard F Keep
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| |
Collapse
|
53
|
Zhou J, Kang X, Luo Y, Yuan Y, Wu Y, Wang M, Liu D. Glibenclamide-Induced Autophagy Inhibits Its Insulin Secretion-Improving Function in β Cells. Int J Endocrinol 2019; 2019:1265175. [PMID: 31511772 PMCID: PMC6714319 DOI: 10.1155/2019/1265175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a metabolic disease, partly due to hypoinsulinism, which affects ∼8% of the world's adult population. Glibenclamide is known to promote insulin secretion by targeting β cells. Autophagy as a self-protective mechanism of cells has been widely studied and has particular physiological effects in different tissues or cells. However, the interaction between autophagy and glibenclamide is unclear. In this study, we investigated the role of autophagy in glibenclamide-induced insulin secretion in pancreatic β cells. Herein, we showed that glibenclamide promoted insulin release and further activated autophagy through the adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) pathway in MIN-6 cells. Inhibition of autophagy with autophagy inhibitor 3-methyladenine (3-MA) potentiated the secretory function of glibenclamide further. These results suggest that glibenclamide-induced autophagy plays an inhibitory role in promoting insulin secretion by activating the AMPK pathway instead of altering the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
- Jiali Zhou
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Yushuang Luo
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Yuju Yuan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Meijun Wang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
54
|
Hussien NR, Al-Naimi MS, Rasheed HA, Al-kuraishy HM, Al-Gareeb AI. Sulfonylurea and neuroprotection: The bright side of the moon. J Adv Pharm Technol Res 2018; 9:120-123. [PMID: 30637228 PMCID: PMC6302683 DOI: 10.4103/japtr.japtr_317_18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sulfonylurea (SUR) agents are the second and most used oral hypoglycemic drugs after metformin and they still as an imperative tool for most favorable of glucose control. SURs are used mainly in the management of Type 2 diabetes mellitus since; they are effective in the glycemic control and reduction of microvascular complications. First-generation SUR represents 3% of used oral hypoglycemic agents while second and third generations are used in about 25% in patients with Type 2 diabetes mellitus. Upregulation of SUR1 receptor has been observed after stroke and traumatic brain injury, therefore, SUR such as glibenclamide inhibits brain edema and astrocyte swelling following brain insults. SUR drugs mainly glibenclamide is effective at a low dose in the management of cerebral stroke and could be a contestant with corticosteroid in controlling brain edema.
Collapse
Affiliation(s)
- Nawar R. Hussien
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Marwa S. Al-Naimi
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Huda A. Rasheed
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|