51
|
Xu XC, Zhang WB, Li CX, Gao H, Pei Q, Cao BW, He TH. Up-Regulation of MiR-1915 Inhibits Proliferation, Invasion, and Migration of Helicobacter pylori-Infected Gastric Cancer Cells via Targeting RAGE. Yonsei Med J 2019; 60:38-47. [PMID: 30554489 PMCID: PMC6298885 DOI: 10.3349/ymj.2019.60.1.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Helicobacter pylori (HP)-infected gastric cancer (GC) is known to be a fatal malignant tumor, but the molecular mechanisms underlying its proliferation, invasion, and migration remain far from being completely understood. Our aim in this study was to explore miR-1915 expression and its molecular mechanisms in regulating proliferation, invasion, and migration of HP-infected GC cells. MATERIALS AND METHODS Quantitative real-time PCR and western blot analysis were performed to determine miR-1915 and receptor for advanced glycation end product (RAGE) expression in HP-infected GC tissues and gastritis tissues, as well as human gastric mucosal cell line GES-1 and human GC cell lines SGC-7901 and MKN45. CCK8 assay and transwell assay were performed to detect the proliferation, invasion, and migration capabilities. MiR-1915 mimics and miR-1915 inhibitor were transfected into GC cells to determine the target relationship between miR-1915 and RAGE. RESULTS MiR-1915 was under-expressed, while RAGE was over-expressed in HP-infected GC tissues and GC cells. Over-expressed miR-1915 could attenuate cellular proliferation, invasion, and migration capacities. RAGE was confirmed to be the target gene of miR-1915 by bioinformatics analysis and luciferase reporter assay. Moreover, HP-infected GC cellular proliferation, invasion, and migration were inhibited after treatment with pcDNA-RAGE. CONCLUSION MiR-1915 exerted tumor-suppressive effects on cellular proliferation, invasion, and migration of HP-infected GC cells via targeting RAGE, which provided an innovative target candidate for treatment of HP-infected GC.
Collapse
Affiliation(s)
- Xin Cai Xu
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen Bin Zhang
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Chun Xing Li
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hua Gao
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qi Pei
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Wei Cao
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tie Han He
- Department of Gastrointestinal Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
52
|
Wang C, Tao W, Ni S, Chen Q. SENP1 Interacts with HIF1α to Regulate Glycolysis of Prostatic Carcinoma Cells. Int J Biol Sci 2019; 15:395-403. [PMID: 30745829 PMCID: PMC6367554 DOI: 10.7150/ijbs.27256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Hypoxic microenvironment inside the tumor forces tumor cells to up-regulate the glycolytic pathway to maintain a sufficient energy supply for tumor growth. Activation of HIF1α under hypoxia condition is able to regulate the expression of glycolysis-related genes, and results in the proliferation and metastasis of cancer cells. However, the mechanism underlying HIF1α activation and glycolysis induction by hypoxia remains unclear. The present study is aimed to test if SENP1 regulates the glycolysis of prostate cancer cells (CaP) by improving stability of HIF1α protein. Methods: We employed qPCR and western blotting assay to analyze expression of HIF1α and SENP1. Glucose uptake assay, lactate production assay, LDH release assay and ATP production assay were utilized to evaluate cell glycolysis. The interaction between SENP1 and HIF1α was verified by co-immunoprecipitation assay. Results: We found that hypoxia condition improves glucose uptake and lactate production to sustain sufficient ATP for cellular activity in prostatic carcinoma cells. The expression of SENP1 mRNA was significantly increased in human prostatic carcinoma cell lines after exposure to hypoxia, accompanied by the up-regulation of HIF1α. Furthermore, forced expression of SENP1 was shown to regulate the glycolysis in prostatic carcinoma cells by stabilizing HIF1α. The up-regulation of SENP1 promotes tumor cell proliferation and tumorgenesis by interacting with HIF1α which was deSUMOylated and sequentially leading to a “Warburg effect”. Conclusion: SENP1 interacts with HIF1α to regulate glycolysis and proliferation of prostatic carcinoma cells under hypoxia condition, which provides new insights into prostatic carcinoma therapy.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiyang Tao
- Department of Breast Surgery, the Third Affiliated Hospital of Harbin Medical, University, Harbin, China
| | - Shaobin Ni
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiyin Chen
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
53
|
Colletti M, Paolini A, Galardi A, Di Paolo V, Pascucci L, Russo I, De Angelis B, Peinado H, De Vito R, Milano GM, Locatelli F, Masotti A, Di Giannatale A. Expression profiles of exosomal miRNAs isolated from plasma of patients with desmoplastic small round cell tumor. Epigenomics 2018; 11:489-500. [PMID: 30569756 DOI: 10.2217/epi-2018-0179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive mesenchymal tumor, lacking biomarkers for diagnosis, treatment stratification and prognosis. We investigated the exosomal miRNA profile in plasma samples collected from DSRCT patients, evaluating their potential as circulating biomarkers for this tumor. PATIENTS & METHODS We isolated exosomes from plasma of three DSRCT adolescents and four age-matched healthy controls; expression of circulating miRNAs was quantified by qPCR. RESULTS We identified 55 miRNAs significantly modulated compared with healthy controls. Among these miRNAs, 14 were highly dysregulated in at least one patient and 5 were expressed in all patients. CONCLUSION To our knowledge, this is the first report describing exosomal miRNAs as promising biomarkers to characterize disease status in DSRCT patients.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Galardi
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ida Russo
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rita De Vito
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio 4, 00165 Rome, Italy
| | - Giuseppe M Milano
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy.,Department of Ginecology/Obstetrics & Pediatrics, Sapienza University of Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant' Onofrio, 4, 00165 Rome, Italy
| |
Collapse
|
54
|
Wang X, Lu J, Cao J, Ma B, Gao C, Qi F. MicroRNA-18a promotes hepatocellular carcinoma proliferation, migration, and invasion by targeting Bcl2L10. Onco Targets Ther 2018; 11:7919-7934. [PMID: 30519035 PMCID: PMC6235330 DOI: 10.2147/ott.s180971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is known to feature several microRNA dysregulations. This study aimed to determine and investigate the prognostic value of microRNA (miRNA/miR)-18a and its role in regulating the progression of HCC. METHODS miR-18a expressions in human HCC tissues, pair-matched adjacent normal liver tissues as well as in HCC cell lines were determined by quantitative real-time PCR. The prognostic value of miR-18a was determined using Kaplan-Meier survival analysis and multivariable Cox regression assay. The ability of miR-18a in promoting HCC progression was verified in vitro. RESULTS miR-18a expressions in HCC tissues and cells were more than twice those of the normal control group (P<0.05). miR-18a expression was associated with the alpha-fetoprotein (AFP) level, TNM stage, tumor size, and intrahepatic vascular invasion (P<0.05). Kaplan- Meier survival analysis revealed that HCC patients with high expression of miR-18a possessed a more unfavorable prognosis (log-rank P<0.001). Overexpression of miR-18a promoted cell apoptosis and proliferation, induced S phase transition, as well as enhanced the migration and invasion ability of HCC cells. miR-18a was found to directly target the downstream molecule Bcl2L10. Furthermore, overexpressing Bcl2L10 was able to partly reverse the promoting effects of miR-18a on HCC cell progression. CONCLUSION miR-18a may serve as a prognostic biomarker of HCC as it is demonstrated to carry out a decisive role in HCC progression by promoting HCC cell invasion, migration, and proliferation through targeting Bcl2L10.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jisen Cao
- Department of Hepatobiliary Surgery, Tianjin Third Center Hospital, Tianjin, China
| | - Bozhao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
55
|
Piletic K, Kunej T. MicroRNA-Target Interactions Reloaded: Identification of Potentially Functional Sequence Variants Within Validated MicroRNA-Target Interactions. ACTA ACUST UNITED AC 2018; 22:700-708. [DOI: 10.1089/omi.2018.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Klara Piletic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
56
|
Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D'Ippolito E, Cosentino G, Baroni S, Iorio MV, Hidalgo-Miranda A. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep 2018; 8:12252. [PMID: 30115973 PMCID: PMC6095912 DOI: 10.1038/s41598-018-29708-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive neoplasia lacking the expression of hormonal receptors and human epidermal growth factor receptor-2. Accumulating evidence has highlighted the importance of miRNAs dysregulation in the establishment of cancer programs, but the functional role of many miRNAs remains unclear. The description of miRNAs roles might provide novel strategies for treatment. In the present work, an integrated analysis of miRNA transcriptional landscape was performed (N = 132), identifying the significant down-modulation of miR-342-3p in TNBC, probably because of the aberrant activity of estrogen receptor, which serves as a transcription factor of the miRNA, as demonstrated by a siRNA-knockdown approach. The enhanced expression of miR-342-3p significantly decreased cell proliferation, viability and migration rates of diverse TN cells in vitro. Bioinformatic and functional analyses revealed that miR-342-3p directly targets the monocarboxylate transporter 1 (MCT1), which promotes lactate and glucose fluxes alteration, thus disrupting the metabolic homeostasis of tumor cells. Optical metabolic imaging assay defined a higher optical redox ratio in glycolytic cells overexpressing miR-342-3p. Furthermore, we found that hypoxic conditions and glucose starvation attenuate miR-342-3p expression, suggesting a crosstalk program between these metabolic factors. Consistently, miR-342-3p down-modulation is associated with an increased MCT1 expression level and glycolytic score in human triple negative tumors. Overall, we described for the first time the regulatory activity of miR-342-3p on relevant metabolic carcinogenic pathways in TN breast cancers.
Collapse
Affiliation(s)
- Sandra L Romero-Cordoba
- Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | - Elvira D'Ippolito
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Cosentino
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Baroni
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena V Iorio
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | |
Collapse
|
57
|
Cheng S, Cui Y, Fan L, Mu X, Hua Y. T2DM inhibition of endothelial miR-342-3p facilitates angiogenic dysfunction via repression of FGF11 signaling. Biochem Biophys Res Commun 2018; 503:71-78. [PMID: 29852165 DOI: 10.1016/j.bbrc.2018.05.179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022]
Abstract
Understanding the function and molecular relevance of distinct miRNAs in endothelial cells (ECs) paves avenues for possible therapeutic intervention by targeting epigenetic mechanisms in vascular endothelial dysfunction, one of the major complications of type 2 diabetes mellitus (T2DM). MiR-342-3p, an obesity-associated miRNA, has recently been shown to be significantly upregulated in human angiosarcoma compared to benign hemangioma, indicating its potential involvement as a proangiogenic factor. Herein, we show that endothelial miR-342-3p expression was significantly compromised in T2DM organisms and this inhibition powerfully blocked vasculogenesis in vivo by repressing endothelial proliferation and migration. From a mechanistic standpoint, miR-342-3p promoted the transactivation of fibroblast growth factor 11 (FGF11) by directly targeting its 3' untranslated regions (3'UTRs). Functionally, overexpression of exogenous FGF11 successfully rescued miR-342-3p deficiency-impaired endothelial proliferation and migration. Thus, perturbation of miR-342-3p/FGF11 cascade by hyperinsulinemia plays a causative role in the induction of vascular dysfunction in T2DM. Overall, the current study underscore an endothelial facet of miR-342-3p, which may operate as a novel epigenetic integrator linking adipogenic homeostasis and angiogenesis.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of Clinical Laboratory, The 3(rd)People's Hospital of Qingdao, Qingdao, 266041, Shandong Province, China
| | - Yanxiang Cui
- Department of Clinical Laboratory, Qingdao Huangdao District Hospital of Traditional Chinese Medicine, Qingdao, 266500, Shandong Province, China
| | - Lin Fan
- Department of Clinical Laboratory, The 3(rd)People's Hospital of Qingdao, Qingdao, 266041, Shandong Province, China
| | - Xiaofeng Mu
- Department of Clinical Laboratory, Qingdao Central Hospital, Qingdao, 266042, Shandong Province, China
| | - Yuzhong Hua
- Department of Clinical Laboratory, The 3(rd)People's Hospital of Qingdao, Qingdao, 266041, Shandong Province, China.
| |
Collapse
|
58
|
Hu K, Mu X, Kolibaba H, Yin Q, Liu C, Liang X, Lu J. Metadherin is an apoptotic modulator in prostate cancer through miR-342-3p regulation. Saudi J Biol Sci 2018; 25:975-981. [PMID: 30108450 PMCID: PMC6088108 DOI: 10.1016/j.sjbs.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. This study focused to clarify the roles of Metadherin (MTDH) and miR-342-3p in prostate cancer. We identified that MTDH was up-regulated and miR-342-3p was down-regulated in the prostate tissues, and there is an inverse correlation between MTDH and miR-342-3p. Functional studies revealed that miR-342-3p directly targets MTDH via binding to the 3' untranslated regions (UTRs) in the prostate cancer cells. Moreover, we also found MTDH overexpression in DU145 and PC3 cells inhibited apoptosis. Subsequently, miR-342-3p has been revealed to reverse the MTDH effect on the cellular apoptosis in the further studies. Our results indicate that MTDH repress apoptosis of prostate cancer in vitro and provides a new strategy for human prostate cancer therapy in the future.
Collapse
Affiliation(s)
- Kebang Hu
- Department of Urology, The First Hospital, Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | | | - Qinan Yin
- Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chune Liu
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xueqing Liang
- Department of Urology, The First Hospital, Jilin University, Changchun 130021, China
| | - Ji Lu
- Department of Urology, The First Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|