51
|
Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2008; 15:50-8. [PMID: 19098907 PMCID: PMC2692090 DOI: 10.1038/nm.1900] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 11/19/2008] [Indexed: 12/21/2022]
Abstract
Gamma-secretase inhibitors (GSIs) block the activation of oncogenic NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor auto-up-regulation and induced apoptotic cell death through induction of BIM expression. GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of Klf4, a negative regulator of cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of Ccnd2 and protected mice from developing intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL.
Collapse
|
52
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
53
|
BRI2 inhibits amyloid beta-peptide precursor protein processing by interfering with the docking of secretases to the substrate. J Neurosci 2008; 28:8668-76. [PMID: 18753367 DOI: 10.1523/jneurosci.2094-08.2008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations of amyloid beta-peptide (Abeta) production caused by mutations in the Abeta precursor protein (APP) cause familial Alzheimer's disease (AD). Mutations in BRI2, a gene of undefined function, are linked to familial British and Danish dementias, which are pathologically and clinically similar to Alzheimer's disease. We report that BRI2 is a physiological suppressor of Abeta production. BRI2 restrict docking of gamma-secretase to APP and access of alpha- and beta-secretases to their cleavage APP sequences. Alterations of BRI2 by gene targeting or transgenic expression regulate Abeta levels and AD pathology in mouse models of AD. Competitive inhibition of APP processing by BRI2 may provide a new approach to AD therapy and prevention.
Collapse
|
54
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
55
|
Abstract
Mounting evidence points to soluble peptide oligomers as the primary agents in various amyloid and prion diseases. Multiple mechanisms appear to contribute to the cytotoxic effects of these oligomers. Here, an additional, general mechanism is proposed - that soluble amyloid peptide oligomers serve as "all-purpose"beta strands that can interact with transiently unfolded or nascent proteins where interior beta-sheet edges are exposed. The proteins, trapped in misfolded states through this interaction, become substrates for ubiquitination, targeting them for proteasomal degradation. The increased load of ubiquitinated proteins could contribute to the impairment of the ubiquitin/proteasome system (UPS) seen in many amyloid-related diseases. This "misfolding trap" mechanism could be especially stressful in the endoplasmic reticulum, where the amyloid oligomers would compete with chaperones for nascent beta-sheet proteins. If the bound amyloid oligomer dissociates at some point after the misfolded protein is committed to the UPS pathway, the oligomer could then repeat the process, adding a catalytic aspect to the misfolding mechanism. Direct proof of this proposed mechanism requires detection of amyloid oligomer-beta-sheet protein complexes, and a co-immunoprecipitation experiment is proposed. This hypothesis supports therapies that increase amyloid oligomer degradation or sequestration, as well as therapies that upregulate chaperone activity, for combating amyloid-related diseases.
Collapse
Affiliation(s)
- James M Gruschus
- Laboratory of Computational Biology, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
56
|
Yaari R, Kumar S, Tariot PN. Non-cholinergic drug development for Alzheimer's disease. Expert Opin Drug Discov 2008; 3:745-60. [DOI: 10.1517/17460441.3.7.745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
57
|
Zhao RC, Zhu YS, Shi Y. New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacol Ther 2008; 119:74-82. [PMID: 18562010 DOI: 10.1016/j.pharmthera.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/28/2022]
Abstract
For decades, intensive studies have attempted to identify the mechanisms underlying malignant tumor growth. Despite significant progress, most therapeutic approaches fail to eliminate all tumor cells. The remaining tumor cells often result in recurrence and metastasis. Recently, the idea of a cancer stem cell was proposed to explain of the origin of cancer cells. According to this hypothesis, a small fraction of tumor cells have the capacity for self-renewal, with unlimited slow proliferation potential. They are often resistant to chemotherapy and radiation and thus are responsible for continuously supplying new cancer cells, which themselves may have a limited life span. In recent years, accumulating experimental evidence supports this hypothesis and provides new possibilities to conquer cancer. This review will focus on the distinction between normal adult stem cells and cancer stem cells and identifies possible key targets for effective therapies of cancer.
Collapse
Affiliation(s)
- Robert Chunhua Zhao
- Institute of Basic Medical Sciences & School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 5# Dongdansantiao, Beijing, 100005, PR China.
| | | | | |
Collapse
|
58
|
Kreft A, Harrison B, Aschmies S, Atchison K, Casebier D, Cole DC, Diamantidis G, Ellingboe J, Hauze D, Hu Y, Huryn D, Jin M, Kubrak D, Lu P, Lundquist J, Mann C, Martone R, Moore W, Oganesian A, Porte A, Riddell DR, Sonnenberg-Reines J, Stock JR, Sun SC, Wagner E, Woller K, Xu Z, Zhou H, Steven Jacobsen J. Discovery of a novel series of Notch-sparing gamma-secretase inhibitors. Bioorg Med Chem Lett 2008; 18:4232-6. [PMID: 18556202 DOI: 10.1016/j.bmcl.2008.05.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/15/2022]
Abstract
Using a cell-based assay, we have identified a new series of Notch-sparing gamma-secretase inhibitors from HTS screening leads 2a and 2e. Lead optimization studies led to the discovery of analog 8e with improved gamma-secretase inhibitory potency and Notch-sparing selectivity.
Collapse
Affiliation(s)
- Anthony Kreft
- Chemical and Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
60
|
Takata M, Nakashima M, Takehara T, Baba H, Machida K, Akitake Y, Ono K, Hosokawa M, Takahashi M. Detection of amyloid beta protein in the urine of Alzheimer's disease patients and healthy individuals. Neurosci Lett 2008; 435:126-30. [PMID: 18343031 DOI: 10.1016/j.neulet.2008.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/26/2008] [Accepted: 02/12/2008] [Indexed: 12/30/2022]
Abstract
To seek for a new valid biomarker using non-invasive specimens for the diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI), we carried out the detection of amyloid beta (Abeta) protein in urine. Ten-millilitre urine samples were first sedimented with trichloroacetic acid, and the pellets were resuspended for further analysis by Western blotting with anti-Abeta antibody. The detection sensitivity of the method was 40pg/ml. Rates of subjects positive for monomeric Abeta according to their clinical dementia rating (CDR) were 11.1% for CDR 0, 62.5% for CDR 0.5, 83.3% for CDR 1, 54.5% for CDR 2 and 0% for CDR 3. A single Abeta band relative to the CDR score reflects an alteration in the production, solubility and clearance of Abeta in the brain. Thus, the method could be used as both a diagnostic and monitoring tool in assessing AD and MCI patients during disease-modifying therapies.
Collapse
Affiliation(s)
- Manabu Takata
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.
Collapse
Affiliation(s)
- Michael E Boulton
- Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
62
|
La maladie d’Alzheimer : des lésions cérébrales aux perspectives thérapeutiques. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2008. [DOI: 10.1016/s0001-4079(19)32836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
63
|
McBriar MD, Clader JW, Chu I, Del Vecchio RA, Favreau L, Greenlee WJ, Hyde LA, Nomeir AA, Parker EM, Pissarnitski DA, Song L, Zhang L, Zhao Z. Discovery of amide and heteroaryl isosteres as carbamate replacements in a series of orally active gamma-secretase inhibitors. Bioorg Med Chem Lett 2007; 18:215-9. [PMID: 17988864 DOI: 10.1016/j.bmcl.2007.10.092] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 11/18/2022]
Abstract
The design of amide and heteroaryl amide isosteres as replacements for the carbamate substructure in previously disclosed 2,6-disubstituted piperidine N-arylsulfonamides is described. In several cases, amides lessened CYP liabilities in this class of gamma-secretase inhibitors. Selected compounds showed significant reduction of Abeta levels upon oral dosing in a transgenic murine model of Alzheimer's disease.
Collapse
Affiliation(s)
- Mark D McBriar
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Eisele YS, Baumann M, Klebl B, Nordhammer C, Jucker M, Kilger E. Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol Biol Cell 2007; 18:3591-600. [PMID: 17626163 PMCID: PMC1951756 DOI: 10.1091/mbc.e07-01-0035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 12/23/2022] Open
Abstract
Amyloid-beta (Abeta) deposition is a major pathological hallmark of Alzheimer's disease. Gleevec, a known tyrosine kinase inhibitor, has been shown to lower Abeta secretion, and it is considered a potential basis for novel therapies for Alzheimer's disease. Here, we show that Gleevec decreases Abeta levels without the inhibition of Notch cleavage by a mechanism distinct from gamma-secretase inhibition. Gleevec does not influence gamma-secretase activity in vitro; however, treatment of cell lines leads to a dose-dependent increase in the amyloid precursor protein intracellular domain (AICD), whereas secreted Abeta is decreased. This effect is observed even in presence of a potent gamma-secretase inhibitor, suggesting that Gleevec does not activate AICD generation but instead may slow down AICD turnover. Concomitant with the increase in AICD, Gleevec leads to elevated mRNA and protein levels of the Abeta-degrading enzyme neprilysin, a potential target gene of AICD-regulated transcription. Thus, the Gleevec mediated-increase in neprilysin expression may involve enhanced AICD signaling. The finding that Gleevec elevates neprilysin levels suggests that its Abeta-lowering effect may be caused by increased Abeta-degradation.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- *Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; and
| | | | - Bert Klebl
- Axxima Pharmaceuticals AG, D-81377 Munich, Germany
| | - Christina Nordhammer
- *Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; and
| | - Mathias Jucker
- *Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; and
| | - Ellen Kilger
- *Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany; and
| |
Collapse
|
65
|
Abstract
Drugs that function as enzyme inhibitors constitute a significant portion of the orally bioavailable therapeutic agents that are in clinical use today. Likewise, much of drug discovery and development efforts at present are focused on identifying and optimizing drug candidates that act through inhibition of specific enzyme targets. The attractiveness of enzymes as targets for drug discovery stems from the high levels of disease association (target validation) and druggability (target tractability) that typically characterize this class of proteins. In this expert opinion the authors describe the existing practices and future directions in drug discovery enzymology, with emphasis on how a detailed understanding of the catalytic mechanism of specific targets can be used to identify and optimize small-molecule compounds that interact with conformationally distinct forms of the enzyme, thus resulting in high potency, high selectivity inhibitors.
Collapse
Affiliation(s)
- Robert A Copeland
- Department of Biology, Oncology Center of Excellence in Drug Discovery, GlaxoSmithKline, Collegeville, PA 19426, USA.
| | | | | |
Collapse
|
66
|
Josien H, Bara T, Rajagopalan M, Asberom T, Clader JW, Favreau L, Greenlee WJ, Hyde LA, Nomeir AA, Parker EM, Pissarnitski DA, Song L, Wong GT, Zhang L, Zhang Q, Zhao Z. Small conformationally restricted piperidine N-arylsulfonamides as orally active gamma-secretase inhibitors. Bioorg Med Chem Lett 2007; 17:5330-5. [PMID: 17761417 DOI: 10.1016/j.bmcl.2007.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/08/2007] [Accepted: 08/08/2007] [Indexed: 01/21/2023]
Abstract
The design and development of a new class of small 2,6-disubstituted piperidine N-arylsulfonamide gamma-secretase inhibitors is reported. Lowering molecular weight including the use of conformational constraint led to compounds with less CYP 3A4 liability compared to early leads. Compounds active orally in lowering Abeta levels in Tg CRND8 mice were identified as potential treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Hubert Josien
- Department of Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07302, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Craig H, Isaac RE, Brooks DR. Unravelling the moulting degradome: new opportunities for chemotherapy? Trends Parasitol 2007; 23:248-53. [PMID: 17459772 DOI: 10.1016/j.pt.2007.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/26/2007] [Accepted: 04/05/2007] [Indexed: 01/26/2023]
Abstract
Replacement of the nematode cuticle with a newly synthesized cuticle (a process known as moulting) occurs four times during larval development. Therefore, the key components of this essential developmental process represent attractive targets for new chemotherapeutic strategies. Recent advances in understanding the molecular genetics of nematode moulting should stimulate and facilitate development of novel drugs that target the essential molecules of the moulting cycle. In particular, we argue that further understanding of the moulting degradome and its key peptidase members offers an important opportunity for the development of novel antinematode agents.
Collapse
Affiliation(s)
- Hannah Craig
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | | |
Collapse
|
68
|
Mancini F, Naldi M, Cavrini V, Andrisano V. Multiwell fluorometric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors. Anal Bioanal Chem 2007; 388:1175-83. [PMID: 17541560 DOI: 10.1007/s00216-007-1356-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
The amyloid beta (Abeta) peptide is responsible for toxic amyloid plaque formation and is central to the aetiology of Alzheimer's disease (AD). It is generated by proteolytic processing of the amyloid precursor protein (APP) by beta-secretase (BACE-1) and gamma-secretase. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach to the treatment of Alzheimer's disease. This paper reports on improved microtiter plate-based fluorescence and colorimetric assays for the high-throughput screening (HTS) of BACE-1 inhibitors achieved by employing, for the first time, casein fluorescein isothiocyanate (casein-FITC) and N-alpha-benzoyl-D,L-arginine p-nitroanilide (BAPNA) as substrates, since they are known to be readily available and convenient substrates for proteases. The methods are based on the fluorescence enhancement following casein-FITC proteolysis and the visible absorbance of the p-nitroaniline (pNA) produced by BAPNA hydrolysis, with both reactions catalysed by BACE-1. Casein-FITC is a high-affinity substrate (K (m) = 110 nM) for BACE-1, more so than the Swedish (SW) type peptide (a peptide containing the Swedish mutant of APP, a familiar mutation that enhances Abeta production). BACE-1 catalysis of casein-FITC proteolysis exhibited Michaelis-Menten kinetic. Therefore, it was found that BACE-1 was saturable with casein-FITC that was processed in a time- and pH-dependent manner with greater catalytic efficiency than observed for the SW peptide. The enantioselective hydrolysis of L-BAPNA by BACE-1 was observed. L-BAPNA was hydrolysed ten times more efficiently by BACE-1 than the WT (wild-type peptide). The novel methods were validated using a FRET assay as an independent reference method. Therefore, in order to select new leads endowed with multifunctional activities, drugs for Alzheimer's disease (AD) - potent acetylcholinesterase (AChE) inhibitors - were tested for BACE-1 inhibition using the proposed validated assays. Among these, donepezil, besides being an acetylcholinesterase inhibitor, was also found to be a BACE-1 inhibitor that displayed submicromolar potency (170 nM).
Collapse
Affiliation(s)
- Francesca Mancini
- Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, Bologna, Italy
| | | | | | | |
Collapse
|
69
|
Abstract
Donepezil hydrochloride is the most widely prescribed drug for Alzheimer's disease (AD). The main mechanism of action through which it influences cognition and function is presumed to be the inhibition of acetylcholinesterase enzyme in the brain; however, donepezil may also impact the pathophysiology of AD at several other points. Officially approved for mild-to-moderate and severe AD, donepezil has also been shown to be effective in early-stage AD, vascular dementia, Parkinson's disease dementia/Lewy body disease and cognitive symptoms associated with multiple sclerosis. In addition, one study suggested that donepezil may delay the onset of AD in subjects with mild cognitive impairment, a prodrome to AD. The pharmacokinetics, pharmacodynamics, safety/tolerability profile and drug interaction properties of donepezil make it an easy and safe agent to use. However, in general, the efficacy of donepezil is limited, and ongoing studies are investigating other agents that may ultimately overtake its present position as the mainstay of anti-AD therapy.
Collapse
Affiliation(s)
- Ben Seltzer
- V.A. Boston Healthcare System, Department of Neurology, Harvard Medical School, Geriatric Research Center, Boston, MA 02130, USA.
| |
Collapse
|
70
|
Selivanova A, Winblad B, Farmery MR, Dantuma NP, Ankarcrona M. COPI-mediated retrograde transport is required for efficient γ-secretase cleavage of the amyloid precursor protein. Biochem Biophys Res Commun 2006; 350:220-6. [PMID: 16999935 DOI: 10.1016/j.bbrc.2006.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/09/2006] [Indexed: 11/30/2022]
Abstract
Sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases results in the production of beta-amyloid peptide, which is a key determinant in Alzheimer's disease. Since several putative locations for gamma-secretase cleavage have been identified along the secretory pathway, trafficking of APP may be of importance for beta-amyloid peptide production. Here we have studied the role of retrograde transport in APP processing. We found that APP interacts with the beta subunit of the coatomer protein I (COPI) complex, which is involved in retrograde transport. In line with a role of retrograde trafficking in APP transport, inhibition of COPI-dependent transport altered APP trafficking, decreased APP cell surface expression, and coincided with a profound reduction in gamma-secretase cleavage. These results suggest that COPI-dependent retrograde transport is important for APP processing and influences production of beta-amyloid peptide.
Collapse
Affiliation(s)
- Alexandra Selivanova
- Department of Neurobiology, Caring Sciences and Society (NVS), KI Alzheimer Disease Research Center, Karolinska Institutet, Novum 5th floor, S-141 57 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
71
|
Narlawar R, Pérez Revuelta BI, Baumann K, Schubenel R, Haass C, Steiner H, Schmidt B. N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase. Bioorg Med Chem Lett 2006; 17:176-82. [PMID: 17035010 DOI: 10.1016/j.bmcl.2006.09.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.
Collapse
Affiliation(s)
- Rajeshwar Narlawar
- Clemens Schöpf-Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Petersenstr. 22, D-64287 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Fear G, Komarnytsky S, Raskin I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 2006; 113:354-68. [PMID: 17098288 PMCID: PMC7112583 DOI: 10.1016/j.pharmthera.2006.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 09/05/2006] [Indexed: 01/28/2023]
Abstract
Precise spatial and temporal regulation of proteolytic activity is essential to human physiology. Modulation of protease activity with synthetic peptidomimetic inhibitors has proven to be clinically useful for treating human immunodeficiency virus (HIV) and hypertension and shows potential for medicinal application in cancer, obesity, cardiovascular, inflammatory, neurodegenerative diseases, and various infectious and parasitic diseases. Exploration of natural inhibitors and synthesis of peptidomimetic molecules has provided many promising compounds performing successfully in animal studies. Several protease inhibitors are undergoing further evaluation in human clinical trials. New research strategies are now focusing on the need for improved comprehension of protease-regulated cascades, along with precise selection of targets and improved inhibitor specificity. It remains to be seen which second generation agents will evolve into approved drugs or complementary therapies.
Collapse
Affiliation(s)
- Georgie Fear
- Biotech Center, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|