51
|
Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M, Kawai H, Kashiwagi A. Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 2009; 9:306-13. [PMID: 19393775 DOI: 10.1016/j.mito.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/04/2009] [Accepted: 04/15/2009] [Indexed: 02/05/2023]
Abstract
To investigate the relationship between oxidative stress and progressive spread of the stroke-like lesions in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with 3243A>G mutation, we retrospectively analyzed the spread frequency in patients with and without treatment with the radical scavenger edaravone. Oxidative damage and defensive enzymes were histologically evaluated. Spread was significantly less frequent in the patients treated with edaravone. Although 8-hydroxy-2'-deoxyguanosine, a marker for oxidative damage of DNA, was obviously accumulated in peri-lesional surviving neurons, manganese superoxide dismutase and 8-oxoguanine glycosylase 1 were not up-regulated in those neurons. Increased oxidative stress and insufficient defense could be involved in the pathogenesis of the spreading lesions in MELAS.
Collapse
Affiliation(s)
- Yuri Katayama
- Division of Neurology, Department of Internal Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
The association of genetic factors and cerebral infarction (CI) has long been established. A positive family history alone is a recognized risk factor for CI and vascular events in general. However, there are certain inherited conditions that further increase the risk of stroke. These conditions are generally metabolic and mitochondrial genetic defects that have variable modes of inheritance. This article reviews major inherited metabolic disorders that predispose an individual to CI. Ten main conditions will be discussed: Fabry's disease, cerebrotendinous xanthomatosis, tangier disease, familial hypercholesterolemia, homocystinuria, methylmalonic acidemia, glutaric aciduria type I, propionic acidemia, ornithine transcarbamylase deficiency and mitochondrial encephalopathy, lactic acidosis and stroke-like phenomenon.
Collapse
Affiliation(s)
- Kavita Kalidas
- Department of Neurology, University of South Florida College of Medicine, Tampa, FL 33606, USA.
| | | |
Collapse
|
53
|
Rossmanith W, Freilinger M, Roka J, Raffelsberger T, Moser-Their K, Prayer D, Bernert G, Bittner R. Isolated cytochrome c oxidase deficiency as a cause of MELAS. BMJ Case Rep 2009; 2009:bcr08.2008.0666. [PMID: 21686692 PMCID: PMC3027970 DOI: 10.1136/bcr.08.2008.0666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Deletion of a single nucleotide (7630delT) within MT-CO2, the gene of subunit II of cytochrome c oxidase (COX), was identified in a clinically typical MELAS case. The deletion-induced frameshift results in a stop codon close to the 5' end of the reading frame. The lack of subunit II (COII) precludes the assembly of COX and leads to the degradation of unassembled subunits, even those not directly affected by the mutation. Despite mitochondrial proliferation and transcriptional upregulation of nuclear and mtDNA-encoded COX genes (including MT-CO2), a severe COX deficiency was found with all investigations of the muscle biopsy (histochemistry, biochemistry, immunoblotting). The 7630delT mutation in MT-CO2 leads to a lack of COII with subsequent misassembly and degradation of respiratory complex IV despite transcriptional upregulation of its subunits. The genetic and pathobiochemical heterogeneity of MELAS appears to be greater than previously appreciated.
Collapse
Affiliation(s)
- Walter Rossmanith
- Medical University of Vienna, Währinger Straße 13, Vienna, 1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Finsterer J. Cognitive decline as a manifestation of mitochondrial disorders (mitochondrial dementia). J Neurol Sci 2008; 272:20-33. [DOI: 10.1016/j.jns.2008.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 05/18/2008] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
|
55
|
Scaglia F, Wong LJC. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve 2008; 37:150-71. [PMID: 17999409 DOI: 10.1002/mus.20917] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human mitochondrial genome encodes 13 proteins. All are subunits of the respiratory chain complexes involved in energy metabolism. These proteins are translated by a set of 22 mitochondrial transfer RNAs (tRNAs) that are required for codon reading. Human mitochondrial tRNA genes are hotspots for pathogenic mutations and have attracted interest over the last two decades with the rapid discovery of point mutations associated with a vast array of neuromuscular disorders and diverse clinical phenotypes. In this review, we use a scoring system to determine the pathogenicity of the mutations and summarize the current knowledge of structure-function relationships of these mutant tRNAs. We also provide readers with an overview of a large variety of mechanisms by which mutations may affect the mitochondrial translation machinery and cause disease.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
56
|
Fujii H, Mori Y, Kayamori K, Igari T, Ito E, Akashi T, Noguchi Y, Kitamura K, Okado T, Terada Y, Kanda E, Rai T, Uchida S, Sasaki S. A familial case of mitochondrial disease resembling Alport syndrome. Clin Exp Nephrol 2008; 12:159-163. [DOI: 10.1007/s10157-007-0022-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
57
|
Abstract
Significant progress has been made in identifying neuroprotective agents and their translation to patients with neurological disorders. While the direct causative pathways of neurodegeneration remain unclear, they are under great clinical and experimental investigation. There are a number of interrelated pathogenic mechanisms triggering molecular events that lead to neuronal death. One putative mechanism reported to play a prominent role in the pathogenesis of neurological diseases is impaired energy metabolism. If reduced energy stores play a role in neuronal loss, then therapeutic strategies that buffer intracellular energy levels may prevent or impede the neurodegenerative process. Recent studies suggest that impaired energy production promotes neurological disease onset and progression. Sustained ATP levels are critical to cellular homeostasis and may have both direct and indirect influence on pathogenic mechanisms associated with neurological disorders. Creatine is a critical component in maintaining cellular energy homeostasis, and its administration has been reported to be neuroprotective in a wide number of both acute and chronic experimental models of neurological disease. In the context of this chapter, we will review the experimental evidence for creatine supplementation as a neurotherapeutic strategy in patients with neurological disorders, including Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease, as well as in ischemic stroke, brain and spinal cord trauma, and epilepsy.
Collapse
|
58
|
Swerdlow RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a "complex" problem. Antioxid Redox Signal 2007; 9:1591-603. [PMID: 17663643 DOI: 10.1089/ars.2007.1676] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria function differently in aged brains than they do in young brains. Consistently reported changes include reduced electron transport chain (ETC) enzyme activities, reduced phosphorylation of ADP, and increased reactive oxygen species (ROS) production. Various neurodegenerative diseases are also associated with changes in mitochondrial function, and these changes both recapitulate and extend those seen in "normal" aging. Unfortunately, attempts to treat neurodegenerative diseases by treating mitochondria-related pathology have thus far minimally impacted affected patients. A better understanding of how mitochondrial function changes in aging and neurodegenerative diseases, though, now suggests new approaches to mitochondrial therapy may prove more efficacious. Increasing ETC capacity, increasing oxidative phosphorylation, or decreasing mitochondrial ROS may yet prove useful for the treatment of brain aging and neurodegenerative diseases, and accomplishing this seems increasingly feasible. This review will discuss the role of mitochondrial function and dysfunction in aging and neurodegenerative diseases, and will focus on potential treatment strategies.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
59
|
Takahashi N, Shimada T, Ishibashi Y, Yoshitomi H, Oyake N, Murakami Y, Nishino I, Nonaka I, Goto YI, Kitamura J. Marked left ventricular hypertrophy in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Int J Cardiol 2007; 129:e77-80. [PMID: 17900719 DOI: 10.1016/j.ijcard.2007.06.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/23/2007] [Indexed: 10/22/2022]
|
60
|
Abstract
Mitochondria are fundamental for oxidative energy production and impairment of their functionality can lead to reduced ATP synthesis and contribute to initiation of apoptosis. Endocrine tissues critically rely on oxidative phosphorylation so that mitochondrial abnormalities may either be causes or consequences of diminished hormone production or action. Abnormalities typical for diseases caused by mitochondrial DNA mutations such as Kearns-Sayre syndrome or mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome are also seen in certain endocrine diseases. Lack or excess of thyroid hormones, major ubiquitous regulators of mitochondrial content and activity, cause muscular abnormalities and multisystem disorders. Mitochondria are a further prerequisite for steroidogenesis as well as insulin secretion and action. Recent studies showed that reduced mitochondrial ATP synthesis in skeletal muscle is a feature of certain hereditary and acquired forms of insulin resistance and diabetes mellitus. Finally, ageing is not only accompanied by various degrees of hormonal deficiency and insulin resistance but is also associated with a progressive decline of mitochondrial number and function. Future research is needed to examine whether mitochondrial abnormalities are the cause or consequence of ageing and frequent metabolic diseases such as obesity and type 2 diabetes mellitus, and to address mitochondria as a target for novel therapeutic regimes.
Collapse
Affiliation(s)
- R Stark
- Hanusch Hospital, Karl-Landsteiner Institute for Endocrinology and Metabolism, Heinrich Collin Strasse 30, A-1140 Vienna, Austria
| | | |
Collapse
|
61
|
Lin CM, Thajeb P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab Brain Dis 2007; 22:105-9. [PMID: 17226098 DOI: 10.1007/s11011-006-9039-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common presentations of patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). MELAS is typically caused by an A-to-G substitution at nucleotide position 3243 of mitochondrial DNA. Valproic acid, a common anticonvulsant, can actually increase the frequency of seizures in individuals with MELAS. Here, we report a single case-study of a 38-year-old man who presented with focal seizures and had MELAS Syndrome due to the A3243G mitochondrial DNA mutation. Manifestation of epilepsia partialis continua was aggravated by use of valproic acid. Convulsions abated after discontinuation of valproic acid. Our experience suggests that valproic acid should be avoided for the treatment of epilepsy in individuals with mitochondrial disease.
Collapse
Affiliation(s)
- Chih-Ming Lin
- Department of Neurology, Mackay Memorial Hospital, No. 92, Chungshan North Road, Section 2, Taipei, Taiwan.
| | | |
Collapse
|