51
|
Smits KM, Melotte V, Niessen HE, Dubois L, Oberije C, Troost EG, Starmans MH, Boutros PC, Vooijs M, van Engeland M, Lambin P. Epigenetics in radiotherapy: Where are we heading? Radiother Oncol 2014; 111:168-77. [DOI: 10.1016/j.radonc.2014.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
|
52
|
Weißenborn C, Ignatov T, Poehlmann A, Wege AK, Costa SD, Zenclussen AC, Ignatov A. GPER functions as a tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. J Cancer Res Clin Oncol 2014; 140:663-71. [PMID: 24515910 DOI: 10.1007/s00432-014-1598-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients, and its expression is favorable for patients' survival. We investigated the role of GPER as a potential tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. METHODS The effect of GPER agonist G-1 in cell culture was used to determine whether GPER inhibit cell growth. The methylation status of GPER promoter was investigated by methylation-specific PCR. RESULTS GPER-specific agonist G-1 inhibited breast cancer cell proliferation in concentration-dependent manner via induction of the cell cycle arrest in M-phase, enhanced phosphorylation of histone 3 and cell apoptosis. Analysis of the methylation status of the GPER promoter in MCF-7 and SK-BR-3 cells revealed that GPER expression is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Overall, our results are consistent with our recent findings in triple-negative breast cancer cells, and the cell surface expression of GPER makes it an excellent potential therapeutic target for non-triple-negative breast cancer.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cyclopentanes/pharmacology
- DNA Methylation/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Promoter Regions, Genetic/genetics
- Quinolines/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Estrogen/agonists
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Christine Weißenborn
- Department of Obstetrics and Gynecology, University Clinic Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Hayashi M, Nomoto S, Hishida M, Inokawa Y, Kanda M, Okamura Y, Nishikawa Y, Tanaka C, Kobayashi D, Yamada S, Nakayama G, Fujii T, Sugimoto H, Koike M, Fujiwara M, Takeda S, Kodera Y. Identification of the collagen type 1 α 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer 2014; 14:108. [PMID: 24552139 PMCID: PMC4015503 DOI: 10.1186/1471-2407-14-108] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC.
Collapse
Affiliation(s)
| | - Shuji Nomoto
- Gastroenterological Surgery (Department of Surgery II), Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Maleszewska M, Steranka A, Kaminska B. The effects of selected inhibitors of histone modifying enzyme on C6 glioma cells. Pharmacol Rep 2014; 66:107-13. [PMID: 24905315 DOI: 10.1016/j.pharep.2013.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/13/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Aberrant epigenetic histone modifications are implicated in cancer pathobiology, therefore histone modifying enzymes are emerging targets for anti-cancer therapy. There is a few evidence for deregulation of the histone modifying enzymes in glioblastomas. Glioma treatment is a clinical challenge due to its resistance to current therapies. METHODS The effect of selected inhibitors on epigenetic modifications and viability of glioma C6 cells were studied using immunofluorescence and MTT metabolism test. RESULTS We found that VPA and TSA increase histone H4 acetylation in glioma cells, while chaetocin and BIX01294 at low concentrations reduce H3K9me3, and 3DZNep decreases H3K27me3. Long-term treatment with some epigenetic inhibitors affects viability of glioma cells. CONCLUSIONS We established the concentrations of selected inhibitors which in C6 glioma cells inhibit the enzyme activity, but do not decrease cell viability, hence allow to study the role of histone modifications in C6 glioma biology.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Aleksandra Steranka
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, Warszawa, Poland.
| |
Collapse
|
55
|
Mateen S, Raina K, Agarwal R. Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr Cancer 2014; 65 Suppl 1:3-11. [PMID: 23682778 DOI: 10.1080/01635581.2013.785004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of systemic chemotherapeutic drugs and molecular-targeted therapies in the treatment of patients with locally advanced or metastatic lung cancer has its limitations due to the associated acute and cumulative dose limiting toxicities and acquisition of drug resistance. Prevention and therapeutic intervention by dietary agents including nutraceuticals which are non-toxic, cost-effective, and physiologically bioavailable, are emerging approaches in lung cancer management. In this regard, silibinin, a natural flavonolignan, has been rigorously evaluated for the prevention and growth control of lung cancer through extensive in vitro and in vivo studies. Successful studies conducted so far, have established that silibinin is effective both alone and in combination with other agents (e.g., chemotherapeutic and epigenetic agents) in significantly inhibiting the growth of lung cancer cells. In vivo, its effects have been shown to be mediated through inhibition of proliferation, angiogenesis and epigenetic-related events. Therefore, the present review focuses on encompassing the efficacy and mechanisms of silibinin against lung cancer.
Collapse
Affiliation(s)
- Samiha Mateen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 12850 E. Montview Blvd, C238, Aurora, CO 80045, USA
| | | | | |
Collapse
|
56
|
Stoccoro A, Karlsson HL, Coppedè F, Migliore L. Epigenetic effects of nano-sized materials. Toxicology 2013; 313:3-14. [DOI: 10.1016/j.tox.2012.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
|
57
|
HDAC5 promotes osteosarcoma progression by upregulation of Twist 1 expression. Tumour Biol 2013; 35:1383-7. [PMID: 24092570 DOI: 10.1007/s13277-013-1189-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023] Open
Abstract
Histone deacetylases (HDACs) form a family of enzymes, which have fundamental roles in the epigenetic regulation of gene expression and contribute to the growth, differentiation, and apoptosis of cancer cells. In this study, we firstly investigated the biological function of HDAC5 in osteosarcoma cells. We found that mRNA and protein levels of HDAC5 were upregulated in osteosarcoma tissues and cell lines. Furthermore, overexpression of HDAC5 could promote cell proliferation in osteosarcoma cell lines. In contrast, HDAC5 knockdown using small interfering RNA inhibited cell proliferation. At the molecular level, we demonstrated that HDAC5 promoted mRNA expression of twist 1, which has been reported as an oncogene. Together, these results highlighted for the first time an unrecognized link between HDAC5 and osteosarcoma progression and demonstrated that its specific inhibition might contribute to the treatment of tumorigenesis.
Collapse
|
58
|
Stat3 inhibits PTPN13 expression in squamous cell lung carcinoma through recruitment of HDAC5. BIOMED RESEARCH INTERNATIONAL 2013; 2013:468963. [PMID: 24191246 PMCID: PMC3804148 DOI: 10.1155/2013/468963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/17/2013] [Accepted: 08/30/2013] [Indexed: 01/05/2023]
Abstract
Proteins of the protein tyrosine phosphatase (PTP) family are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, and apoptosis. PTPN13 (also known as FAP1, PTPL1, PTPLE, PTPBAS, and PTP1E), a putative tumor suppressor, is frequently inactivated in lung carcinoma through the loss of either mRNA or protein expression. However, the molecular mechanisms underlying its dysregulation have not been fully explored. Interleukin-6 (IL-6) mediated Stat3 activation is viewed as crucial for multiple tumor growth and progression. Here, we demonstrate that PTPN13 is a direct transcriptional target of Stat3 in the squamous cell lung carcinoma. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HCC-1588 and SK-MES-1 cells inhibits PTPN13 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of PTPN13 and promotes its activity through recruiting HDAC5. Thus, our results suggest a previously unknown Stat3-PTPN13 molecular network controlling squamous cell lung carcinoma development.
Collapse
|
59
|
Maleszewska M, Kaminska B. Is glioblastoma an epigenetic malignancy? Cancers (Basel) 2013; 5:1120-39. [PMID: 24202337 PMCID: PMC3795382 DOI: 10.3390/cancers5031120] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023] Open
Abstract
Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw 02-093, Poland.
| | | |
Collapse
|
60
|
Okuno Y, Ohtake F, Igarashi K, Kanno J, Matsumoto T, Takada I, Kato S, Imai Y. Epigenetic regulation of adipogenesis by PHF2 histone demethylase. Diabetes 2013; 62:1426-34. [PMID: 23274892 PMCID: PMC3636657 DOI: 10.2337/db12-0628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PHF2 is a JmjC family histone demethylase that removes the methyl group from H3K9me2 and works as a coactivator for several metabolism-related transcription factors. In this study, we examined the in vivo role of PHF2 in mice. We generated Phf2 floxed mice, systemic Phf2 null mice by crossing Phf2 floxed mice with CMV-Cre transgenic mice, and tamoxifen-inducible Phf2 knockout mice by crossing Phf2 floxed mice with Cre-ERT2 transgenic mice. Systemic Phf2 null mice had partial neonatal death and growth retardation and exhibited less adipose tissue and reduced adipocyte numbers compared with control littermates. Tamoxifen-induced conditional knockout of PHF2 resulted in impaired adipogenesis in stromal vascular cells from the adipose tissue of tamoxifen-inducible Phf2 knockout mice as well as of Phf2 knocked-down 3T3-L1 cells. PHF2 interacts with CEBPA and demethylates H3K9me2 in the promoters of CEBPA-regulated adipogenic genes. These findings suggest that PHF2 histone demethylase potentiates adipogenesis through interaction with CEBPA in vivo. Taken together, PHF2 may be a novel therapeutic target in the treatment of obesity and the metabolic syndrome.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipogenesis
- Adipose Tissue, White/enzymology
- Adipose Tissue, White/growth & development
- Adipose Tissue, White/metabolism
- Animals
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Crosses, Genetic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Developmental
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones/metabolism
- Humans
- Male
- Methylation
- Mice
- Mice, Knockout
- Mice, Transgenic
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Recombinant Proteins/metabolism
- Weight Gain
Collapse
Affiliation(s)
- Yosuke Okuno
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Ohtake
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Takahiro Matsumoto
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ichiro Takada
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | - Yuuki Imai
- Laboratory of Epigenetic Skeletal Diseases, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- Corresponding author: Yuuki Imai,
| |
Collapse
|
61
|
Zhu Y, Das K, Wu J, Lee MH, Tan P. RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells. Oncogene 2013; 33:1527-37. [PMID: 23584480 DOI: 10.1038/onc.2013.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
Histone deacetylase inhibitors (HDACis) are a promising class of anticancer epigenetic drugs, however, molecular factors influencing the responses of individual tumors to HDACi therapies remain obscure. Here, we sought to identify genes associated with HDACi resistance in gastric cancer. Treating a panel of 17 gastric cancer cell lines with multiple HDACi compounds (trichostatin A, SAHA and MS275), we identified two distinct classes of lines exhibiting either HDACi sensitivity or resistance. Genomic comparisons between the sensitive and resistant classes using two independent microarray platforms identified RNH1, encoding a ribonuclease inhibitor, as a gene highly expressed in HDACi-resistant lines. Using genetic knockdown and overexpression assays, we show that RNH1 is both necessary and sufficient to induce HDACi resistance, and that RNH1 is likely to mediate this resistance through the dampening of HDACi-induced reactive oxygen species (ROS) in cancer cells. The discovery of RNH1 as a regulator of HDACi resistance in gastric cancer highlights a functional role for ROS induction in the cellular effects of this important drug class.
Collapse
Affiliation(s)
- Y Zhu
- 1] Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore [2] Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - K Das
- Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore
| | - J Wu
- Cellular and Molecular Research, National Cancer Centre, Singapore
| | - M H Lee
- Cellular and Molecular Research, National Cancer Centre, Singapore
| | - P Tan
- 1] Cancer and Stem Cell and Biology, Duke-NUS Graduate Medical School, Singapore [2] Cellular and Molecular Research, National Cancer Centre, Singapore [3] Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore [4] Genome Institute of Singapore, Singapore
| |
Collapse
|
62
|
Giudice FS, Pinto DS, Nör JE, Squarize CH, Castilho RM. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One 2013; 8:e58672. [PMID: 23527004 PMCID: PMC3603970 DOI: 10.1371/journal.pone.0058672] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
The genome is organized and packed into the nucleus through interactions with core histone proteins. Emerging evidence suggests that tumors are highly responsive to epigenetic alterations that induce chromatin-based events and dynamically influence tumor behavior. We examined chromatin organization in head and neck squamous cell carcinoma (HNSCC) using acetylation levels of histone 3 as a marker of chromatin compaction. Compared to control oral keratinocytes, we found that HNSCC cells are hypoacetylated and that microenvironmental cues (e.g., microvasculature endothelial cells) induce tumor acetylation. Furthermore, we found that chemical inhibition of histone deacetylases (HDAC) reduces the number of cancer stem cells (CSC) and inhibits clonogenic sphere formation. Paradoxically, inhibition of HDAC also induced epithelial-mesenchymal transition (EMT) in HNSCC cells, accumulation of BMI-1, an oncogene associated with tumor aggressiveness, and expression of the vimentin mesenchymal marker. Importantly, we observed co-expression of vimentin and acetylated histone 3 at the invasion front of human HNSCC tumor tissues. Collectively, these findings suggest that environmental cues, such as endothelial cell-secreted factors, modulate tumor plasticity by limiting the population of CSC and inducing EMT. Therefore, inhibition of HDAC may constitute a novel strategy to disrupt the population of CSC in head and neck tumors to create a homogeneous population of cancer cells with biologically defined signatures and predictable behavior.
Collapse
Affiliation(s)
- Fernanda S. Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Decio S. Pinto
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
63
|
Kauntz H, Bousserouel S, Gossé F, Raul F. Epigenetic effects of the natural flavonolignan silibinin on colon adenocarcinoma cells and their derived metastatic cells. Oncol Lett 2013; 5:1273-1277. [PMID: 23599778 PMCID: PMC3629096 DOI: 10.3892/ol.2013.1190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022] Open
Abstract
Epigenetic modifications are important in tumorigenesis. The most frequent epigenetic phenomena in cancer are histone deacetylation and DNA hypermethylation, which lead to gene silencing, particularly of tumor suppressor genes. However, monotherapies with histone deacetylase (HDAC) or DNA methyltransferase (DNMT) inhibitors lack efficacy, hence there is a need to enhance their anticancer action in a safe and effective combination therapy. The present study investigated the epigenetic effects of the natural flavonolignan silibinin in a model of colon cancer progression, the primary adenocarcinoma cells SW480 and their derived metastatic cells SW620. Silibinin did not change the activity of HDACs, but it was able to significantly inhibit DNMT activity in both SW480 and SW620 cells. The clinically used HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), and the broad spectrum HDAC inhibitor, trichostatin A (TSA), combined with silibinin demonstrated synergistic effects on cell death induction, may be related to its DNMT inhibition properties. The present data suggest that treatments combining silibinin and HDAC inhibitors may represent a promising approach, given the non-toxic nature of silibinin and the fact that HDAC inhibitors selectively target cancer cells.
Collapse
Affiliation(s)
- Henriette Kauntz
- Department of Nutritional Cancer Prevention, University of Strasbourg, Unit EA 4438, Faculty of Medicine; ; IRCAD-EITS, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
64
|
Ding G, Liu HD, Huang Q, Liang HX, Ding ZH, Liao ZJ, Huang G. HDAC6 promotes hepatocellular carcinoma progression by inhibiting P53 transcriptional activity. FEBS Lett 2013; 587:880-6. [PMID: 23402884 DOI: 10.1016/j.febslet.2013.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. HDAC6 is a transcriptional regulator of the histone deacetylase family, subfamily 2. Previous studies have shown that HDAC6 plays critical roles in transcription regulation, cell cycle progression and developmental events. However, its biological roles in the development of HCC remain largely unexplored. In the present study, we found that mRNA and protein levels of HDAC6 were up-regulated in HCC tissues and cell lines. The proinflammatory cytokines, which were up-regulated in the human HCC microenvironment, increased HDAC6 expression through a proximal NF-kappaB binding site on the HDAC6 gene promoter. Furthermore, overexpression of HDAC6 could promote cell proliferation in HCC cell lines. In contrast, HDAC6 knockdown using small interfering RNA inhibited cell proliferation. At the molecular level, we demonstrated that HDAC6 could interact with p53 and attenuate its transcriptional activity through promotion of its degradation. Therefore, our results suggest a previously unknown HDAC6-p53 molecular network controlling HCC development.
Collapse
Affiliation(s)
- Gang Ding
- Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | | | | | | | | | | | | |
Collapse
|
65
|
Buckingham L, Bonomi P. Can DNA methylation be used as a prognostic indicator in lung cancer? Lung Cancer Manag 2013. [DOI: 10.2217/lmt.12.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lela Buckingham
- Rush University Medical Center, College of Health Sciences & Department of Pathology, 711 S. Paulina St, Suite 460 JSC, Chicago, IL 60612, USA
| | - Philip Bonomi
- Rush University Medical Center, Section of Medical Oncology, 1725 W. Harrison St, Suite 1010, Chicago, IL 60612, USA
| |
Collapse
|
66
|
Buckingham L. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
67
|
Abstract
Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
68
|
Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA Methyltransferases in Hematologic Malignancies. Semin Hematol 2013; 50:48-60. [DOI: 10.1053/j.seminhematol.2013.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
69
|
Hogenson TL. Epigenetics as the Underlying Mechanism for Monozygotic Twin Discordance. ACTA ACUST UNITED AC 2013. [DOI: 10.1159/000353688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
70
|
Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm 2012; 10:337-52. [PMID: 23215027 DOI: 10.1021/mp3004622] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenetic alterations such as aberrant DNA methylation and histone modifications contribute substantially to both the cause and maintenance of drug resistance. These epigenetic changes lead to silencing of tumor suppressor genes involved in key DNA damage-response pathways, making drug-resistant cancer cells nonresponsive to conventional anticancer drug therapies. Our hypothesis is that treating drug-resistant cells with epigenetic drugs could restore the sensitivity to anticancer drugs by reactivating previously silenced genes. To test our hypothesis, we used drug-resistant breast cancer cells (MCF-7/ADR) and two epigenetic drugs that act via different mechanisms--5-aza-2'-deoxycytidine (decitabine, DAC), a demethylating agent, and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor--in combination with doxorubicin. We show that the sequential treatment of resistant cells, first with an epigenetic drug (DAC), and then with doxorubicin, induces a highly synergistic effect, thus reducing the IC(50) of doxorubicin by several thousand fold. The sequential treatment caused over 90% resistant cells to undergo G2/M cell cycle arrest, determined to be due to upregulation of p21(WAF1/CIP1) expression, which is responsible for cell-cycle regulation. The induction of p21(WAF1/CIP1) correlated well with the depletion of DNA methyltransferase1 (DNMT1), an enzyme that promotes methylation of DNA, suggesting that the p21(WAF1/CIP1) gene may have been methylated and hence is inactive in MCF-7/ADR cells. Microarray analysis shows expression of several tumor suppressor genes and downregulation of tumor promoter genes, particularly in sequentially treated resistant cells. Sequential treatment was found to be significantly more effective than simultaneous treatment, and DAC was more effective than SAHA in overcoming doxorubicin resistance. Synergistic effect with sequential treatment was also seen in drug-sensitive breast cancer cells, but the effect was significantly more pronounced in resistant cells. In conclusion, the sequential treatment of an epigenetic drug in combination with doxorubicin induces a highly synergistic effect that overcomes doxorubicin resistance in breast cancer cells.
Collapse
Affiliation(s)
- Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | | | | | |
Collapse
|
71
|
Li H, Xu W, Huang Y, Huang X, Xu L, Lv Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med 2012; 30:1081-6. [PMID: 22960751 DOI: 10.3892/ijmm.2012.1118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/23/2012] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is a type of tumor usually found in children under 5 years of age, which originates from lesions in the nervous system and has fast growth and early transformation characteristics. Similar to other cancer types, some typical tumor suppressor genes (TSGs), such as P53 and CHD5 are silenced in NB because of high methylation at promoter zones. In the present study, our results showed that genistein, an element found in soy, is an epigenetic modifier able to decrease hypermethylation levels of CHD5, and enhances the expression of CHD5 as well as p53, possibly contributing to inhibition of NB growth in vivo and tumor microvessel formation. Furthermore, genistein acts as a DNA methyltransferase (DNMT) inhibitor to significantly decrease the expression of DNMT3b. Our study indicates that genistein plays an important role in inhibiting NB growth in vivo, probably preventing tumorigenesis risk as a kind of therapeutic agent for NB treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatric Surgery, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200040, PR China
| | | | | | | | | | | |
Collapse
|
72
|
Ivanov M, Kacevska M, Ingelman-Sundberg M. Epigenomics and Interindividual Differences in Drug Response. Clin Pharmacol Ther 2012; 92:727-36. [DOI: 10.1038/clpt.2012.152] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
73
|
Trials with 'epigenetic' drugs: an update. Mol Oncol 2012; 6:657-82. [PMID: 23103179 DOI: 10.1016/j.molonc.2012.09.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of pivotal genes involved in correct cell growth is a hallmark of human pathologies, in particular cancer. These epigenetic mechanisms, including crosstalk between DNA methylation, histone modifications and non-coding RNAs, affect gene expression and are associated with disease progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. Re-expression of genes epigenetically inactivated can result in the suppression of disease state or sensitization to specific therapies. Small molecules that reverse epigenetic inactivation, so-called epi-drugs, are now undergoing clinical trials. Accordingly, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment have approved some of these drugs. Here, we focus on the biological features of epigenetic molecules, analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
74
|
Mateen S, Raina K, Jain AK, Agarwal C, Chan D, Agarwal R. Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silibinin on non-small cell lung cancer cells. Epigenetics 2012; 7:1161-72. [PMID: 22965008 DOI: 10.4161/epi.22070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a renewed focus on targeted therapy against epigenetic events that are altered during the pathogenesis of lung cancer. However, the use of epigenomic modifiers as monotherapy lacks efficacy; thus, there is a need to develop safe and effective drug combinatorial regimens, which reverse epigenetic modifications and exhibit profound anticancer activity. Based on these perspectives, we evaluated, for the first time, the efficacy and associated mechanisms of a novel combinatorial regimen of histone deacetylase inhibitors (HDACi)-trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA)-with silibinin (a flavonolignan with established pre-clinical anti-lung cancer efficacy) against non-small cell lung cancer (NSCLC). Silibinin inhibited HDAC activity and decreased HDAC1-3 levels in NSCLC cells, leading to an overall increase in global histone acetylation states of histones H3 and H4. Combinations of HDCAi with silibinin synergistically augmented the cytotoxic effects of these single agents, which was associated with a dramatic increase in p21 (Cdkn1a). Subsequent ChIP assay indicated increased acetylated histone H3 and H4 levels on p21 promoter region, resulting in its increased transcription. The enhanced p21 levels promoted proteasomal degradation of cyclin B1, the limited supply of which halts the progression of cells into mitosis. Indeed, the resultant biological effect was a significant G 2/M arrest by the combination treatment, followed by apoptotic cell death. Similar epigenetic modulations were observed in vivo, together with a marked reduction in xenograft growth. These findings are both novel and highly significant in establishing that HDACi with silibinin would be safe and effective to suppress NSCLC growth.
Collapse
Affiliation(s)
- Samiha Mateen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption.
Collapse
Affiliation(s)
- Daniel F Camacho
- Department of Internal Medicine and Urology, Michigan Center for Translational Pathology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
76
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|