51
|
Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjørklund G. Biomarkers of Senescence during Aging as Possible Warnings to Use Preventive Measures. Curr Med Chem 2021; 28:1471-1488. [PMID: 32942969 DOI: 10.2174/0929867327999200917150652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Human life expectancy is increasing significantly over time thanks to the improved possibility for people to take care of themselves and the higher availability of food, drugs, hygiene, services, and assistance. The increase in the average age of the population worldwide is, however, becoming a real concern, since aging is associated with the rapid increase in chronic inflammatory pathologies and degenerative diseases, very frequently dependent on senescent phenomena that occur alongside with senescence. Therefore, the search for reliable biomarkers that can diagnose the possible onset or predict the risk of developing a disease associated with aging is a crucial target of current medicine. In this review, we construct a synopsis of the main addressable biomarkers to study the development of aging and the associated ailments.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
52
|
Yammine A, Zarrouk A, Nury T, Vejux A, Latruffe N, Vervandier-Fasseur D, Samadi M, Mackrill JJ, Greige-Gerges H, Auezova L, Lizard G. Prevention by Dietary Polyphenols (Resveratrol, Quercetin, Apigenin) Against 7-Ketocholesterol-Induced Oxiapoptophagy in Neuronal N2a Cells: Potential Interest for the Treatment of Neurodegenerative and Age-Related Diseases. Cells 2020; 9:cells9112346. [PMID: 33114025 PMCID: PMC7690753 DOI: 10.3390/cells9112346] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death. When associated with RSV, QCT and API (3.125; 6.25 µM), 7KC-induced toxicity was reduced. The ability of QCT, RSV and API to prevent 7KC-induced oxidative stress was characterized by a decrease in reactive oxygen species (ROS) production in whole cells and at the mitochondrial level; by an attenuation of the increase in the level and activity of catalase; by attenuating the decrease in the expression, level and activity of glutathione peroxidase 1 (GPx1); by normalizing the expression, level and activity of superoxide dismutases 1 and 2 (SOD1, SOD2); and by reducing the decrease in the expression of nuclear erythroid 2-like factor 2 (Nrf2) which regulates antioxidant genes. QCT, RSV and API also prevented mitochondrial dysfunction in 7KC-treated cells by counteracting the loss of mitochondrial membrane potential (ΨΔm) and attenuating the decreased gene expression and/or protein level of AMP-activated protein kinase α (AMPKα), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) implicated in mitochondrial biogenesis. At the peroxisomal level, QCT, RSV and API prevented the impact of 7KC by counteracting the decrease in ATP binding cassette subfamily D member (ABCD)3 (a peroxisomal mass marker) at the protein and mRNA levels, as well as the decreased expresssion of genes associated with peroxisomal biogenesis (Pex13, Pex14) and peroxisomal β-oxidation (Abcd1, Acox1, Mfp2, Thiolase A). The 7KC-induced decrease in ABCD1 and multifunctional enzyme type 2 (MFP2), two proteins involved in peroxisomal β-oxidation, was also attenuated by RSV, QCT and API. 7KC-induced cell death, which has characteristics of apoptosis (cells with fragmented and/or condensed nuclei; cleaved caspase-3; Poly(ADP-ribose) polymerase (PARP) fragmentation) and autophagy (cells with monodansyl cadaverine positive vacuoles; activation of microtubule associated protein 1 light chain 3–I (LC3-I) to LC3-II, was also strongly attenuated by RSV, QCT and API. Thus, in N2a cells, 7KC induces a mode of cell death by oxiapoptophagy, including criteria of OXIdative stress, APOPTOsis and autoPHAGY, associated with mitochondrial and peroxisomal dysfunction, which is counteracted by RSV, QCT, and API reinforcing the interest for these polyphenols in prevention of diseases associated with increased 7KC levels.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, University Monastir, 5019 Monastir, Tunisia;
- Faculty of Medicine, University Sousse, 4000 Sousse, Tunisia
| | - Thomas Nury
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Anne Vejux
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Norbert Latruffe
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Depterment of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - John J. Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 Cork, Ireland;
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Gérard Lizard
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
- Correspondence: ; Tel.: +333-80-39-62-56; Fax: +333-80-39-62-50
| |
Collapse
|
53
|
Prevention of 7-Ketocholesterol-Induced Overproduction of Reactive Oxygen Species, Mitochondrial Dysfunction and Cell Death with Major Nutrients (Polyphenols, ω3 and ω9 Unsaturated Fatty Acids) of the Mediterranean Diet on N2a Neuronal Cells. Molecules 2020; 25:molecules25102296. [PMID: 32414101 PMCID: PMC7287847 DOI: 10.3390/molecules25102296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The brain, which is a cholesterol-rich organ, can be subject to oxidative stress in a variety of pathophysiological conditions, age-related diseases and some rare pathologies. This can lead to the formation of 7-ketocholesterol (7KC), a toxic derivative of cholesterol mainly produced by auto-oxidation. So, preventing the neuronal toxicity of 7KC is an important issue to avoid brain damage. As there are numerous data in favor of the prevention of neurodegeneration by the Mediterranean diet, this study aimed to evaluate the potential of a series of polyphenols (resveratrol, RSV; quercetin, QCT; and apigenin, API) as well as ω3 and ω9 unsaturated fatty acids (α-linolenic acid, ALA; eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA, and oleic acid, OA) widely present in this diet, to prevent 7KC (50 µM)-induced dysfunction of N2a neuronal cells. When polyphenols and fatty acids were used at non-toxic concentrations (polyphenols: ≤6.25 µM; fatty acids: ≤25 µM) as defined by the fluorescein diacetate assay, they greatly reduce 7KC-induced toxicity. The cytoprotective effects observed with polyphenols and fatty acids were comparable to those of α-tocopherol (400 µM) used as a reference. These polyphenols and fatty acids attenuate the overproduction of reactive oxygen species and the 7KC-induced drop in mitochondrial transmembrane potential (ΔΨm) measured by flow cytometry after dihydroethidium and DiOC6(3) staining, respectively. Moreover, the studied polyphenols and fatty acids reduced plasma membrane permeability considered as a criterion for cell death measured by flow cytometry after propidium iodide staining. Our data show that polyphenols (RSV, QCT and API) as well as ω3 and ω9 unsaturated fatty acids (ALA, EPA, DHA and OA) are potent cytoprotective agents against 7KC-induced neurotoxicity in N2a cells. Their cytoprotective effects could partly explain the benefits of the Mediterranean diet on human health, particularly in the prevention of neurodegenerative diseases.
Collapse
|
54
|
Gonen A, Miller YI. From Inert Storage to Biological Activity-In Search of Identity for Oxidized Cholesteryl Esters. Front Endocrinol (Lausanne) 2020; 11:602252. [PMID: 33329402 PMCID: PMC7715012 DOI: 10.3389/fendo.2020.602252] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Esterification of cholesterol is a universal mechanism to store and transport large quantities of cholesterol between organs and tissues and to avoid toxicity of the excess of cellular cholesterol. Intended for transport and storage and thus to be inert, cholesteryl esters (CEs) reside in hydrophobic cores of circulating lipoproteins and intracellular lipid droplets. However, the inert identity of CEs is dramatically changed if cholesterol is esterified to a polyunsaturated fatty acid and subjected to oxidative modification. Post-synthetic, or epilipidomic, oxidative modifications of CEs are mediated by specialized enzymes, chief among them are lipoxygenases, and by free radical oxidation. The complex repertoire of oxidized CE (OxCE) products exhibit various, context-dependent biological activities, surveyed in this review. Oxidized fatty acyl chains in OxCE can be hydrolyzed and re-esterified, thus seeding oxidized moieties into phospholipids (PLs), with OxPLs having different from OxCEs biological activities. Technological advances in mass spectrometry and the development of new anti-OxCE antibodies make it possible to validate the presence and quantify the levels of OxCEs in human atherosclerotic lesions and plasma. The article discusses the prospects of measuring OxCE levels in plasma as a novel biomarker assay to evaluate risk of developing cardiovascular disease and efficacy of treatment.
Collapse
|