51
|
Krutetskaya ZI, Milenina LS, Antonov VG, Nozdrachev AD. Sigma-1 Receptor Agonist Amitriptyline Inhibits Store-Dependent Ca 2+ Entry in Macrophages. DOKL BIOCHEM BIOPHYS 2019; 488:307-310. [PMID: 31768847 DOI: 10.1134/s1607672919050041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/23/2022]
Abstract
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist-tricyclic antidepressant amitriptyline-significantly inhibits store-dependent Ca2+ entry, induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin and cyclopiazonic acid, in rat peritoneal macrophages. The results suggest a possible involvement of sigma-1 receptors in the regulation of store-dependent Ca2+ entry in macrophages.
Collapse
Affiliation(s)
| | - L S Milenina
- St. Petersburg State University, St. Petersburg, Russia
| | - V G Antonov
- St. Petersburg State University, St. Petersburg, Russia
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, Russia.
- Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
52
|
Lynch E, Semrad T, Belsito VS, FitzGibbons C, Reilly M, Hayakawa K, Suzuki M. C9ORF72-related cellular pathology in skeletal myocytes derived from ALS-patient induced pluripotent stem cells. Dis Model Mech 2019; 12:12/8/dmm039552. [PMID: 31439573 PMCID: PMC6737948 DOI: 10.1242/dmm.039552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neuromuscular disease with no cure and limited treatment options. Patients experience a gradual paralysis leading to death from respiratory complications on average only 2-5 years after diagnosis. There is increasing evidence that skeletal muscle is affected early in the disease process, yet the pathological processes occurring in the skeletal muscle of ALS patients are still mostly unknown. Specifically, the most common genetic cause of ALS, a hexanucleotide repeat expansion in the C9ORF72 gene, has yet to be fully characterized in the context of skeletal muscle. In this study, we used the protocol previously developed in our lab to differentiate skeletal myocytes from induced pluripotent stem cells (iPSCs) of C9ORF72 ALS (C9-ALS) patients in order to create an in vitro disease model of C9-ALS skeletal muscle pathology. Of the three C9ORF72 mutation hallmarks, we did not see any evidence of haploinsufficiency, but we did detect RNA foci and dipeptide repeat (DPR) proteins. Additional abnormalities included changes in the expression of mitochondrial genes and a susceptibility to oxidative stress, indicating that mitochondrial dysfunction may be a critical feature of C9-ALS skeletal muscle pathology. Finally, the C9-ALS myocytes had increased expression and aggregation of TDP-43. Together, these data show that skeletal muscle cells experience pathological changes due to the C9ORF72 mutation. Our in vitro model could facilitate further study of cellular and molecular pathology in ALS skeletal muscle in order to discover new therapeutic targets against this devastating disease. This article has an associated First Person interview with the first author of the paper. Summary: Evidence of protein aggregation and mitochondrial dysfunction were found in skeletal myocytes differentiated from ALS-patient induced pluripotent stem cells with the C9ORF72 mutation.
Collapse
Affiliation(s)
- Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theran Semrad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent S Belsito
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claire FitzGibbons
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Megan Reilly
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA .,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
53
|
Hayashi T. The Sigma-1 Receptor in Cellular Stress Signaling. Front Neurosci 2019; 13:733. [PMID: 31379486 PMCID: PMC6646578 DOI: 10.3389/fnins.2019.00733] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
After decades of research, the sigma-1 receptor (Sig-1R)’s structure, and molecular functions are being unveiled. Sig-1R is an integral endoplasmic reticulum (ER) membrane protein which forms an oligomer and binds a variety of psychotropic drugs. It forms a complex with the ER chaperone BiP that controls specific signaling molecules’ stability and function at the ER to regulate Ca2+ signaling, bioenergetics, and ER stress. Sig-1R is highly enriched in ER subdomains that are physically linked to outer mitochondrial membranes, reflecting its role in regulating ER–mitochondria communications. Thus, Sig-1R ligands are expected to serve as novel neuroprotective agents which treat certain psychiatric and neurodegenerative disorders. In this short review, the cell biological aspects of Sig-1R are discussed, with a particular focus on its role in fundamental ER functions.
Collapse
|
54
|
Ludwig FA, Fischer S, Houska R, Hoepping A, Deuther-Conrad W, Schepmann D, Patt M, Meyer PM, Hesse S, Becker GA, Zientek FR, Steinbach J, Wünsch B, Sabri O, Brust P. In vitro and in vivo Human Metabolism of ( S)-[ 18F]Fluspidine - A Radioligand for Imaging σ 1 Receptors With Positron Emission Tomography (PET). Front Pharmacol 2019; 10:534. [PMID: 31263411 PMCID: PMC6585474 DOI: 10.3389/fphar.2019.00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
(S)-[18F]fluspidine ((S)-[18F]1) has recently been explored for positron emission tomography (PET) imaging of sigma-1 receptors in humans. In the current report, we have used plasma samples of healthy volunteers to investigate the radiometabolites of (S)-[18F]1 and elucidate their structures with LC-MS/MS. For the latter purpose additional in vitro studies were conducted by incubation of (S)-[18F]1 and (S)-1 with human liver microsomes (HLM). In vitro metabolites were characterized by interpretation of MS/MS fragmentation patterns from collision-induced dissociation or by use of reference compounds. Thereby, structures of corresponding radio-HPLC-detected radiometabolites, both in vitro and in vivo (human), could be identified. By incubation with HLM, mainly debenzylation and hydroxylation occurred, beside further mono- and di-oxygenations. The product hydroxylated at the fluoroethyl side chain was glucuronidated. Plasma samples (10, 20, 30 min p.i., n = 5-6), obtained from human subjects receiving 250–300 MBq (S)-[18F]1 showed 97.2, 95.4, and 91.0% of unchanged radioligand, respectively. In urine samples (90 min p.i.) the fraction of unchanged radioligand was only 2.6% and three major radiometabolites were detected. The one with the highest percentage, also found in plasma, matched the glucuronide formed in vitro. Only a small amount of debenzylated metabolite was detected. In conclusion, our metabolic study, in particular the high fractions of unchanged radioligand in plasma, confirms the suitability of (S)-[18F]1 as PET radioligand for sigma-1 receptor imaging.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Richard Houska
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | | | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Dirk Schepmann
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | | | - Franziska Ruth Zientek
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University, Leipzig, Germany
| | - Jörg Steinbach
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig, Germany
| |
Collapse
|
55
|
Romero L, Portillo-Salido E. Trends in Sigma-1 Receptor Research: A 25-Year Bibliometric Analysis. Front Pharmacol 2019; 10:564. [PMID: 31178733 PMCID: PMC6543269 DOI: 10.3389/fphar.2019.00564] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: There are previous reviews focused on Sigma-1 receptor but no bibliometric studies examining this field as a whole. This article aims to present a global view of Sigma-1 receptor research and its intellectual structure. Methods: We used bibliometric indicators of a basic nature as well as techniques for the visualization and analysis of networks of scientific information extracted from Scopus database. Results: In total, 1,102 articles from 1992 to 2017 were identified. The growth in the production of articles is not constant over time, with periods of stagnation of approximately 5 years. Only 247 authors have five or more publications. The authors appear grouped in relatively independent clusters, thus suggesting a low level of collaborations between those dedicated to the Sigma-1 receptor. The United States was the country with the highest production followed by Japan and Germany. Spain, Japan, and Italy showed the highest per million inhabitants ratio. The highest citation/article ratio was reached in France, United States, and Canada. The leading institutions were the University of Münster, the National Institutes of Health, ESTEVE, and INSERM. The top authors in number of publications were Wünsch-B, Schepmann-D, and Maurice-T. Hayashi-T, Su-TP and Bowen-WD showed the highest citations per article. The article by Hayashi-T and Su-TP in Cell (2007) describing the Sigma-1 receptor as a chaperone protein is the top cited reference. Cluster labeling from author co-citation analysis shows that research has been focused on specific diseases such as addiction, neuroprotection and neurodegenerative diseases, psychiatric disorders, and pain. High-frequency terms in author keywords suggest that the research efforts in some areas such as neuroimaging, cocaine addiction or psychiatric disorders have declined over time, while others such as neurodegenerative diseases or pain are currently most popular. Perspective: A greater involvement of the scientific community, with an increase in the scientific production related to Sigma-1, is desirable. Additional boost needed to improve research performance is likely to come from combining data from different laboratories to overcome the limitations of individual approaches. The resulting maps are a useful and attractive tool for the Sigma-1 receptor research community, as they reveal the main lines of exploration at a glance.
Collapse
Affiliation(s)
- Luz Romero
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals, Parc Científic de Barcelona, Barcelona, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
56
|
Yang K, Wang C, Sun T. The Roles of Intracellular Chaperone Proteins, Sigma Receptors, in Parkinson's Disease (PD) and Major Depressive Disorder (MDD). Front Pharmacol 2019; 10:528. [PMID: 31178723 PMCID: PMC6537631 DOI: 10.3389/fphar.2019.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Sigma receptors, including Sigma-1 receptors and Sigma-2 receptors, are highly expressed in the CNS. They are intracellular chaperone proteins. Sigma-1 receptors localize mainly at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM). Upon stimulation, they translocate from MAM to plasma membrane (PM) and nucleus, where they interact with many proteins and ion channels. Sigma-1 receptor could interact with itself to form oligomers, its oligomerization states affect its ability to interact with client proteins including ion channels and BiP. Sigma-1 receptor shows high affinity for many unrelated and structurally diverse ligands, but the mechanism for this diverse drug receptor interaction remains unknown. Sigma-1 receptors also directly bind many proteins including G protein-coupled receptors (GPCRs) and ion channels. In recent years, significant progress has been made in our understanding of roles of the Sigma-1 receptors in normal and pathological conditions, but more studies are still required for the Sigma-2 receptors. The physiological roles of Sigma-1 receptors in the CNS are discussed. They can modulate the activity of many ion channels including voltage-dependent ion channels including Ca2+, Na+, K+ channels and NMDAR, thus affecting neuronal excitability and synaptic activity. They are also involved in synaptic plasticity and learning and memory. Moreover, the activation of Sigma receptors protects neurons from death via the modulation of ER stress, neuroinflammation, and Ca2+ homeostasis. Evidences about the involvement of Sigma-1 receptors in Parkinson’s disease (PD) and Major Depressive Disorder (MDD) are also presented, indicating Sigma-1 receptors might be promising targets for pharmacologically treating PD and MDD.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
57
|
Tesei A, Cortesi M, Pignatta S, Arienti C, Dondio GM, Bigogno C, Malacrida A, Miloso M, Meregalli C, Chiorazzi A, Carozzi V, Cavaletti G, Rui M, Marra A, Rossi D, Collina S. Anti-tumor Efficacy Assessment of the Sigma Receptor Pan Modulator RC-106. A Promising Therapeutic Tool for Pancreatic Cancer. Front Pharmacol 2019; 10:490. [PMID: 31156430 PMCID: PMC6530361 DOI: 10.3389/fphar.2019.00490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor. Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice. Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma. Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | | | | | - Alessio Malacrida
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Mariarosaria Miloso
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Valentina Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
58
|
Rodrigues AVSL, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: Endogenous Role and Therapeutic Potential. J Psychoactive Drugs 2019; 51:299-310. [DOI: 10.1080/02791072.2019.1602291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra VSL Rodrigues
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Jcg Almeida
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry and Mental Health Clinic, Hospital de São João, Porto, Portugal
| |
Collapse
|
59
|
Christ MG, Huesmann H, Nagel H, Kern A, Behl C. Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo. Cells 2019; 8:E211. [PMID: 30832324 PMCID: PMC6468724 DOI: 10.3390/cells8030211] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73), a muscarinic receptor ligand and Sig-1R agonist, on autophagy and proteostasis. We describe, at the molecular level, for the first time, that pharmacological Sig-1R activation a) enhances the autophagic flux in human cells and in Caenorhabditis elegans and b) increases proteostasis capacity, ultimately ameliorating paralysis caused by protein aggregation in C. elegans. ANAVEX2-73 is already in clinical investigation for the treatment of Alzheimer's disease, and the novel activities of this compound on autophagy and proteostasis described here may have consequences for the use and further development of the Sig-1R as a drug target in the future. Moreover, our study defines the Sig-1R as an upstream modulator of canonical autophagy, which may have further implications for various conditions with dysfunctional autophagy, besides neurodegeneration.
Collapse
Affiliation(s)
- Maximilian G Christ
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heike Nagel
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
60
|
Abstract
More than four decades passed since sigma receptors were first mentioned. Since then, existence of at least two receptor subtypes and their tissue distributions have been proposed. Nowadays, it is clear, that sigma receptors are unique ubiquitous proteins with pluripotent function, which can interact with so many different classes of proteins. As the endoplasmic resident proteins, they work as molecular chaperones - accompany various proteins during their folding, ensure trafficking of the maturated proteins between cellular organelles and regulate their functions. In the heart, sigma receptor type 1 is more dominant. Cardiac sigma 1 receptors regulate response to endoplasmic reticulum stress, modulates calcium signaling in cardiomyocyte and can affect function of voltage-gated ion channels. They contributed in pathophysiology of cardiac hypertrophy, heart failure and many other cardiovascular disorders. Therefore, sigma receptors are potential novel targets for specific treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- T Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
61
|
Smith SB, Wang J, Cui X, Mysona BA, Zhao J, Bollinger KE. Sigma 1 receptor: A novel therapeutic target in retinal disease. Prog Retin Eye Res 2018; 67:130-149. [PMID: 30075336 PMCID: PMC6557374 DOI: 10.1016/j.preteyeres.2018.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Retinal degenerative diseases are major causes of untreatable blindness worldwide and efficacious treatments for these diseases are sorely needed. A novel target for treatment of retinal disease is the transmembrane protein Sigma 1 Receptor (Sig1R). This enigmatic protein is an evolutionary isolate with no known homology to any other protein. Sig1R was originally thought to be an opioid receptor. That notion has been dispelled and more recent pharmacological and molecular studies suggest that it is a pluripotent modulator with a number of biological functions, many of which are relevant to retinal disease. This review provides an overview of the discovery of Sig1R and early pharmacologic studies that led to the cloning of the Sig1R gene and eventual elucidation of its crystal structure. Studies of Sig1R in the eye were not reported until the late 1990s, but since that time there has been increasing interest in the potential role of Sig1R as a target for retinal disease. Studies have focused on elucidating the mechanism(s) of Sig1R function in retina including calcium regulation, modulation of oxidative stress, ion channel regulation and molecular chaperone activity. Mechanistic studies have been performed in isolated retinal cells, such as Müller glial cells, microglial cells, optic nerve head astrocytes and retinal ganglion cells as well as in the intact retina. Several compelling studies have provided evidence of powerful in vivo neuroprotective effects against ganglion cell loss as well as photoreceptor cell loss. Also described are studies that have examined retinal structure/function in various models of retinal disease in which Sig1R is absent and reveal that these phenotypes are accelerated compared to retinas of animals that express Sig1R. The collective evidence from analysis of studies over the past 20 years is that Sig1R plays a key role in modulating retinal cellular stress and that it holds great promise as a target in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA.
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Barbara A Mysona
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Jing Zhao
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| | - Kathryn E Bollinger
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| |
Collapse
|
62
|
Krutetskaya ZI, Milenina LS, Naumova AA, Butov SN, Antonov VG, Nozdrachev AD. Amitriptyline Attenuates Ca 2+ Responses Induced by Glutoxim and Molixan in Macrophages. DOKL BIOCHEM BIOPHYS 2018; 481:222-224. [PMID: 30168065 DOI: 10.1134/s1607672918040117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/23/2022]
Abstract
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist, tricyclic antidepressant amitriptyline, significantly inhibits glutoxim- and molixan-induced Ca2+-responses in rat peritoneal macrophages. The results suggest possible involvement of sigma-1 receptors in the signaling cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.
Collapse
Affiliation(s)
- Z I Krutetskaya
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - L S Milenina
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A A Naumova
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S N Butov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - V G Antonov
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
63
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|