51
|
Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2016.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
52
|
Zhu JY, Fu Y, Nettleton M, Richman A, Han Z. High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. eLife 2017; 6:22617. [PMID: 28084990 PMCID: PMC5300701 DOI: 10.7554/elife.22617] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors. DOI:http://dx.doi.org/10.7554/eLife.22617.001 Around one in 100 children are born with heart defects caused by congenital heart disease. Studying the genetic sequences of people with congenital heart disease has revealed many genes that may play a role in causing the condition, but few of these findings have been confirmed experimentally in animal model systems. The fruit fly species Drosophila melanogaster is often used in genetic studies because it is a relatively simple organism. The insights gained from studying flies are often valuable for determining the direction of subsequent investigations in more complex animals – such as humans – that involve experiments that are more costly and less efficient. Zhu, Fu et al. have now used fruit flies to investigate the effects of 134 genes that have been suggested to contribute to congenital heart disease. The investigation used a method that rapidly allowed the activity of specific genes to be altered in the flies. The effects that these alterations had on many aspects of heart development, structure and activity were then measured. Of all the genes tested, 70 caused heart defects in the flies. Several of these genes help to modify the structure of proteins called histones; these modifications play important roles in heart cell formation and growth. Further tests showed that the effects of specific genetic errors that had been identified in people with congenital heart disease could be reliably reproduced in the flies. This may allow individual cases of congenital heart disease to be replicated and studied closely in the lab, helping to create treatments that are personalised to each patient. Studying congenital heart disease in flies provides a fast and simple first step in understanding the roles that different genes play in the disease. Moving forward, precise gene editing techniques could be used to generate flies to examine the role of each of the genetic mutations that occur in individual patients. Ultimately, when gene editing techniques are ready to be used in humans, this could lead to cures for congenital heart disease at the DNA level, so that these mutations won’t be passed on to the next generation. DOI:http://dx.doi.org/10.7554/eLife.22617.002
Collapse
Affiliation(s)
- Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Yulong Fu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Margaret Nettleton
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| |
Collapse
|
53
|
Garcia J, Lizcano F. KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:169-175. [PMID: 27840577 PMCID: PMC5094578 DOI: 10.4137/bcbcr.s40182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
54
|
Fullard JF, Halene TB, Giambartolomei C, Haroutunian V, Akbarian S, Roussos P. Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophr Res 2016; 177:115-124. [PMID: 26827128 PMCID: PMC4963306 DOI: 10.1016/j.schres.2016.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these variants reside within non-coding sequences of the genome and are predicted to exert their effects by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming increasingly evident that many risk-associated variants are enriched for expression Quantitative Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous research endeavors may not capture fully cell-type and/or region specific changes associated with brain diseases. Coupling recent technological advances in genomics with cell-type specific methodologies, we are presented with an unprecedented opportunity to better understand the genetics of normal brain development and function and, in turn, the molecular basis of neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
Collapse
Affiliation(s)
- John F. Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tobias B. Halene
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
55
|
Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2634976. [PMID: 27722168 PMCID: PMC5046009 DOI: 10.1155/2016/2634976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.
Collapse
|
56
|
Xie P, Zang LQ, Li XK, Shu Q. An epigenetic view of developmental diseases: new targets, new therapies. World J Pediatr 2016; 12:291-297. [PMID: 27351564 DOI: 10.1007/s12519-016-0020-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Function of epigenetic modifications is one of the most competitive fields in life science. Over the past several decades, it has been revealed that epigenetic modifications play essential roles in development and diseases including developmental diseases. In the present review, we summarize the recent progress about the function of epigenetic regulation, especially DNA and RNA modifications in developmental diseases. DATA SOURCES Original research articles and literature reviews published in PubMed-indexed journals. RESULTS DNA modifications including methylation and demethylation can regulate gene expression, and are involved in development and multiple diseases including Rett syndrome, Autism spectrum disorders, congenital heart disease and cancer, etc. RNA methylation and demethylation play important roles in RNA processing, reprogramming, circadian, and neuronal activity, and then modulate development. CONCLUSIONS DNA and RNA modifications play important roles in development and diseases through regulating gene expression. Epigenetic components could serve as novel targets for the treatment of developmental diseases.
Collapse
Affiliation(s)
- Pei Xie
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Li-Qun Zang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Kun Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
57
|
Risk factors of different congenital heart defects in Guangdong, China. Pediatr Res 2016; 79:549-58. [PMID: 26679154 DOI: 10.1038/pr.2015.264] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Limited studies have evaluated the risk factors for congenital heart defects (CHDs) in China and compared them for different types of CHDs. This study examined risk factors between isolated and multiple CHDs as well as among CHDs subtypes in Guangdong, Southern China. METHODS This population-based case-control study included 4,034 pairs of case and control infants enrolled in the Guangdong Registry of CHD study, 2004-2013. Multivariate logistic regression was used to compute adjusted odds ratios (ORs) while simultaneously controlling for confounders. RESULTS Multiple maternal environmental exposures, including living in newly renovated rooms, residential proximity to main traffic, paternal smoking, and maternal occupation as manual worker, were significantly associated with CHDs with ORs ranging 1.30-9.43. Maternal perinatal diseases (including maternal fever, diabetes, influenza, and threatened abortion), maternal medication use (antibiotic use), advanced maternal age, low socioeconomic status, and paternal alcohol intake were also significantly associated with CHDs, with ORs ranging 1.60-3.96. Isolated CHDs and multiple defects have different profiles of risk factors, while subtype of CHD shares common risk factors. CONCLUSION These results suggest that maternal environmental exposures/occupation and perinatal diseases/medication use were dominant risk factors associated with CHDs in Southern China. Isolated and multiple CHDs may have different etiologic factors.
Collapse
|
58
|
Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Rev Proteomics 2016; 13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Duan L, Rai G, Roggero C, Zhang QJ, Wei Q, Ma SH, Zhou Y, Santoyo J, Martinez ED, Xiao G, Raj GV, Jadhav A, Simeonov A, Maloney DJ, Rizo J, Hsieh JT, Liu ZP. KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. CHEMISTRY & BIOLOGY 2015; 22:1185-96. [PMID: 26364928 PMCID: PMC4578295 DOI: 10.1016/j.chembiol.2015.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/18/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and are thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here, we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated genes. Compound B3 is highly selective for a variety of cancer cell lines including PC3 cells that lack AR. B3 inhibited the in vivo growth of tumors derived from PC3 cells and ex vivo human PCa explants. We identified a novel mechanism by which KDM4B activates the transcription of Polo-like kinase 1 (PLK1). B3 blocked the binding of KDM4B to the PLK1 promoter. Our studies suggest a potential mechanism-based therapeutic strategy for PCa and tumors with elevated KDM4B/PLK1 expression.
Collapse
Affiliation(s)
- Lingling Duan
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Carlos Roggero
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing-Jun Zhang
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qun Wei
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shi Hong Ma
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunyun Zhou
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Santoyo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabeth D Martinez
- Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Josep Rizo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhi-Ping Liu
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
60
|
Yang XY, Jing XY, Chen Z, Liu YL. Correlation between GATA4 gene polymorphism and congenital heart disease. Int J Clin Exp Med 2015; 8:16733-16736. [PMID: 26629213 PMCID: PMC4659101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The correlation between GATA4 gene polymorphism and congenital heart disease (CHD) was analyzed. METHOD Clinical data and blood samples were collected from 350 CHD patients who were treated at the Department of Cardiology in Beijing Anzhen Hospital. The control group consisted of 350 healthy subjects receiving physical examination at our hospital during the same period. Polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for locus rs11392441 of GATA4 gene. RESULTS Polymorphism of locus rs1139244 of GATA4 gene was detected in CHD patients. The distribution frequencies of GG genotype and G allele were significantly higher than those of the control group. CONCLUSION Polymorphism of locus rs1139244 of GATA4 gene was correlated with CHD.
Collapse
Affiliation(s)
- Xue-Yong Yang
- The Fourth Ward, Beijing Anzhen Hospital, Capital Medical University Beijing 100029, China
| | - Xiao-Yong Jing
- The Fourth Ward, Beijing Anzhen Hospital, Capital Medical University Beijing 100029, China
| | - Zhe Chen
- The Fourth Ward, Beijing Anzhen Hospital, Capital Medical University Beijing 100029, China
| | - Ying-Long Liu
- The Fourth Ward, Beijing Anzhen Hospital, Capital Medical University Beijing 100029, China
| |
Collapse
|