51
|
Improved Expansion and In Vivo Function of Patient T Cells by a Serum-free Medium. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:65-74. [PMID: 29687031 PMCID: PMC5907749 DOI: 10.1016/j.omtm.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Improvements to T cell culture systems that promote long-term engraftment and function of adoptively transferred T cells will likely result in superior clinical benefit to more individuals. To this end, we recently developed a chemically defined cell culture medium that robustly expands all T cell subsets in the absence of human serum. Using a humanized mouse model, we observed that T cells expanded in the absence of human serum provided durable control of tumors, whereas T cells expanded in medium supplemented with human serum only mediated transient control of tumor growth. Importantly, our new medium effectively expanded more differentiated T cells from multiple myeloma patients in the absence of serum. These patient-derived T cells were also able to provide durable control of B cell tumors in vivo, and this long-term control of cancer was lost when T cells were expanded in the presence of serum. Thus, engineered T cells expanded in an optimized medium in the absence of serum may have improved therapeutic potential.
Collapse
|
52
|
Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P. Phenotypic Modulation and Neuroprotective Effects of Olfactory Ensheathing Cells: a Promising Tool for Cell Therapy. Stem Cell Rev Rep 2017; 12:224-34. [PMID: 26553037 DOI: 10.1007/s12015-015-9635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Olfactory Ensheathing Cells (OECs), exhibiting phenotypic characteristics of both astrocytes and Schwann Cells, show peculiar plasticity. In vitro, OECs promote axonal growth, while in vivo they promote remyelination of damaged axons. We decided to further investigate OEC potential for regeneration and functional recovery of the damaged Central Nervous System (CNS). To study OEC antigen modulation, OECs prepared from postnatal mouse olfactory bulbs were grown in different culture conditions: standard or serum-free media with/without Growth Factors (GFs) and analyzed for different neural specific markers. OEC functional characterizations were also achieved. Resistance of OECs to the neurotoxin 6-hydroxydopamine (6-OHDA) was analyzed by evaluating apoptosis and death. OEC neuroprotective properties were investigated by in vitro co-cultures or by addition of OEC conditioned medium to the neuroblastoma SH-SY5Y cells exposed to 6-OHDA. We observed: 1) modification of OEC morphology, reduced cell survival and marker expression in serum-free medium; 2) GF addition to serum-free medium condition influenced positively survival and restored basal marker expression; 3) no OEC apoptosis after a prolonged exposition to 6-OHDA; 4) a clear OEC neuroprotective tendency, albeit non statistically significant, on 6-OHDA treated SH-SY5Y cells. These peculiar properties of OECs might render them potential clinical agents able to support injured CNS.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, via Paolo Gaifami 18, 95126, Catania, Italy.
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Damiano Zaccheo
- Department of Experimental Medicine, Section of Human Anatomy, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.,Department of Pathophysiology and Transplantation - "Dino Ferrari" Center, Università degli Studi di Milano, via Francesco Sforza 35, 20122, Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| |
Collapse
|
53
|
Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings. Stem Cells Int 2017; 2017:6597815. [PMID: 29158740 PMCID: PMC5660800 DOI: 10.1155/2017/6597815] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS) as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way.
Collapse
|
54
|
Remodeling the Human Adult Stem Cell Niche for Regenerative Medicine Applications. Stem Cells Int 2017; 2017:6406025. [PMID: 29090011 PMCID: PMC5635271 DOI: 10.1155/2017/6406025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regeneration in vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizing in vitro or in vivo the various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.
Collapse
|
55
|
Gélinas JF, Davies LA, Gill DR, Hyde SC. Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Sci Rep 2017; 7:10198. [PMID: 28860488 PMCID: PMC5579034 DOI: 10.1038/s41598-017-07893-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/31/2017] [Indexed: 12/01/2022] Open
Abstract
The development of lentiviral-based therapeutics is challenged by the high cost of current Good Manufacturing Practices (cGMP) production. Lentiviruses are enveloped viruses that capture a portion of the host cell membrane during budding, which then constitutes part of the virus particle. This process might lead to lipid and protein depletion in the cell membrane and affect cell viability. Furthermore, growth in suspension also causes stresses that can affect virus production yields. To assess the impact of these issues, selected supplements (Cholesterol Lipid Concentrate, Chemically Defined Lipid Concentrate, Lipid Mixture 1, Gelatin Peptone N3, N-Acetyl-L-Cysteine and Pluronic F-68) were assayed in order to improve production yields in a transient transfection production of a Sendai virus F/HN-pseudotyped HIV-1-based third generation lentiviral vector in FreeStyle 293 (serum-free media) in suspension. None of the supplements tested had a significant positive impact on lentiviral vector yields, but small non-significant improvements could be combined to increase vector production in a cell line where other conditions have been optimised.
Collapse
Affiliation(s)
- Jean-François Gélinas
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK
| | - Lee A Davies
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK.,United Kingdom Cystic Fibrosis Gene Therapy Consortium, Oxford, Edinburgh, London, UK
| | - Deborah R Gill
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK.,United Kingdom Cystic Fibrosis Gene Therapy Consortium, Oxford, Edinburgh, London, UK
| | - Stephen C Hyde
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK. .,United Kingdom Cystic Fibrosis Gene Therapy Consortium, Oxford, Edinburgh, London, UK.
| |
Collapse
|
56
|
|
57
|
Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K. Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 2017. [PMID: 28625827 DOI: 10.1016/j.addr.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Therapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells. Despite these exciting developments, the full potential of cell-based therapeutics cannot be realized unless new engineering technologies enable cost-effective, consistent manufacturing of high-quality therapeutic cells at large-scale. Here we review cell-based immunotherapy concepts focused on the state-of-the-art in manufacturing processes including cell sourcing, isolation, expansion, modification, quality control (QC), and culture media requirements. We also offer insights into how current technologies could be significantly improved and augmented by new technologies, and how disciplines must converge to meet the long-term needs for large-scale production of cell-based immunotherapies.
Collapse
Affiliation(s)
- Nate J Dwarshuis
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Kirsten Parratt
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Department of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Adriana Santiago-Miranda
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30332-0313, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
58
|
Horváthy DB, Simon M, Schwarz CM, Masteling M, Vácz G, Hornyák I, Lacza Z. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. Biofactors 2017; 43:315-330. [PMID: 27859738 DOI: 10.1002/biof.1337] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Albumin is a major plasma protein that has become ubiquitous in regenerative medicine research. As such, many studies have examined its structure and advantageous properties. However, a systematic and comprehensive understanding of albumin's role, capabilities and therapeutic potential still eludes the field. In the present work, we review how albumin is applied in tissue engineering, including cell culture and storage, in vitro fertilization and transplantation. Furthermore, we discuss how albumin's physiological role extends beyond a carrier for metal ions, fatty acids, pharmacons and growth factors. Albumin acts as a bacteriostatic coating that simultaneously promotes attachment and proliferation of eukaryotic cells. These properties with the combination of free radical scavenging, neutrophil activation and as a buffer molecule already make the albumin protein beneficial in healing processes supporting functional tissue remodeling. Nevertheless, recent data revealed that albumin can be synthesized by osteoblasts and its local concentration is raised after bone trauma. Interestingly, by increasing the local albumin concentration in vivo, faster bone healing is achieved, possibly because albumin recruits endogenous stem cells and promotes the growth of new bone. These data also suggest an active role of albumin, even though a specific receptor has not yet been identified. Together, this discussion sheds light on why the extravascular use of the albumin molecule is in the scope of scientific investigations and why it should be considered as a local therapeutic agent in regenerative medicine. © 2016 BioFactors, 43(3):315-330, 2017.
Collapse
Affiliation(s)
- Dénes B Horváthy
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Melinda Simon
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Charlotte M Schwarz
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Mariana Masteling
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Gabriella Vácz
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - István Hornyák
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
59
|
Bernardi M, Agostini F, Chieregato K, Amati E, Durante C, Rassu M, Ruggeri M, Sella S, Lombardi E, Mazzucato M, Astori G. The production method affects the efficacy of platelet derivatives to expand mesenchymal stromal cells in vitro. J Transl Med 2017; 15:90. [PMID: 28460641 PMCID: PMC5412035 DOI: 10.1186/s12967-017-1185-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background The use of fetal bovine serum (FBS) as a media supplement for the ex vivo expansion of bone-marrow derived mesenchymal stromal cells (BM-MSC) has been discouraged by regulatory agencies, due to the risk of transmitting zoonoses and to elicit immune reactions in the host once transplanted. Platelet derivatives are valid FBS substitutes due to their content of growth factors that can be released disrupting the platelets by physical methods or physiological stimuli. We compared platelet derivatives produced by freezing/thawing (platelet lysates, PL) or after CaCl2 activation (platelet releasate surnatant rich in growth factors, PR-SRGF) for their content in growth factors and their ability to support the ex vivo expansion of BM-MSC. Methods The cytokine content in the two platelet derivatives was evaluated. BM-MSC were expanded in complete medium containing 10, 7.5 and 5% PL or PR-SRGF and the cell phenotype, clonogenic capacity, immunomodulation properties and tri-lineage differentiation potential of the expanded cells in both media were investigated. Results The concentration of PDGF-AB, PDGF-AA, PDGF-BB in PR-SRGF resulted to be respectively 5.7×, 1.7× and 2.3× higher compared to PL. PR-SRGF promoted a higher BM-MSC proliferation rate compared to PL not altering BM-MSC phenotype. Colony forming efficiency of BM-MSC expanded in PR-SRGF showed a frequency of colonies significantly higher than cells expanded in PL. BM-MSC expanded in PL or PR-SRGF maintained their immunomodulatory properties against activated lymphocytes even if BM-MSC expanded in FBS performed significantly better. Conclusions The method used to release platelet factors significantly affects the enrichment in growth factors and overall product performance. The standardization of the production process of platelet derivatives and the definition of their release criteria requires further investigation.
Collapse
Affiliation(s)
- Martina Bernardi
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Francesco Agostini
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Eliana Amati
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Cristina Durante
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - Mario Rassu
- Department of Microbiology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Marco Ruggeri
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Elisabetta Lombardi
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy.
| |
Collapse
|
60
|
Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
|
62
|
Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2016; 19:155-169. [PMID: 28017599 DOI: 10.1016/j.jcyt.2016.11.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
The cell therapy industry is a fast-growing industry targeted toward a myriad of clinical indications. As the cell therapy industry matures and clinical trials hit their pivotal Phase 3 studies, there will be a significant need for scale-up, process validation, and critical raw material quality assurance. Part of the well discussed challenges of upscaling manufacturing processes there is a less discussed issue relating to the availability of raw materials in the needed quality and quantities. The FDA recently noted that over 80% of the 66 investigational new drug (IND) applications for mesenchymal stem cell (MSC) products analyzed described the use of FBS during manufacturing. Accumulated data from the past years show an acceleration in serum consumption by at least 10%-15% annually, which suggests that the global demand for serum may soon exceed the supply. Ongoing concerns of safety issues due to risks of various pathogen contaminations, as well as issues related to the aforementioned serum variability that can affect final product reproducibility, are strong motivators to search for serum substitutes or serum-free media. it is important to note that there are no accepted definitions for most of these terms which leads to misleading's and misunderstandings, where the same term might be defined differently by different vendors, manufacturer, and users. It is the drug developer's responsibility to clarify what the supplied labels mean and to identify the correct questions and audits to ensure quality. The paper reviews the available serum replacements, main components, basic strategies for replacement of serum and suggests definitions.
Collapse
Affiliation(s)
| | | | - Julie G Allickson
- Regenerative Medicine Clinical Center, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nan Zhang
- Hematology Branch, National Heart, Lung, and Blood Institute National Institute of Health, Bethesda, Maryland, USA
| | - Sunghoon Jung
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | - Shannon S Eaker
- GE Healthcare Cell Therapy Division, Marlborough, Massachusetts, USA
| | | | - Allan Chan
- Bioprocessing Technology Institute, Singapore
| | | | - Amy K Wehn
- Irvine Scientific, Santa Ana, California, USA
| | - Steve Oh
- Bioprocessing Technology Institute, Singapore
| | | |
Collapse
|
63
|
de Soure AM, Fernandes-Platzgummer A, Moreira F, Lilaia C, Liu SH, Ku CP, Huang YF, Milligan W, Cabral JMS, da Silva CL. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2016; 11:1630-1640. [DOI: 10.1002/term.2200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- António M. de Soure
- Department of Bioengineering and iBB-; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Francisco Moreira
- Department of Bioengineering and iBB-; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Carla Lilaia
- Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental; Lisboa Portugal
| | - Shi-Hwei Liu
- R&D, AventaCell BioMedical Co., Ltd.; New Taipei City Taiwan
| | - Chen-Peng Ku
- R&D, AventaCell BioMedical Co., Ltd.; New Taipei City Taiwan
- R&D, AventaCell BioMedical Co., Ltd; Atlanta GA USA
| | - Yi-Feng Huang
- R&D, AventaCell BioMedical Co., Ltd.; New Taipei City Taiwan
- R&D, AventaCell BioMedical Co., Ltd; Atlanta GA USA
| | - William Milligan
- R&D, AventaCell BioMedical Co., Ltd.; New Taipei City Taiwan
- R&D, AventaCell BioMedical Co., Ltd; Atlanta GA USA
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB-; Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
64
|
Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 2016; 7:93. [PMID: 27411942 PMCID: PMC4944312 DOI: 10.1186/s13287-016-0352-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of fetal bovine serum (FBS) as a cell culture supplement is discouraged by regulatory authorities to limit the risk of zoonoses and xenogeneic immune reactions in the transplanted host. Additionally, FBS production came under scrutiny due to animal welfare concerns. Platelet derivatives have been proposed as FBS substitutes for the ex-vivo expansion of mesenchymal stem/stromal cells (MSCs) since platelet-derived growth factors can promote MSC ex-vivo expansion. Platelet-derived growth factors are present in platelet lysate (PL) obtained after repeated freezing–thawing cycles of the platelet-rich plasma or by applying physiological stimuli such as thrombin or CaCl2. PL-expanded MSCs have been used already in the clinic, taking advantage of their faster proliferation compared with FBS-expanded preparations. Should PL be applied to other biopharmaceutical products, its demand is likely to increase dramatically. The use of fresh platelet units for the production of PL raises concerns due to limited availability of platelet donors. Expired units might represent an alternative, but further data are needed to define safety, including pathogen reduction, and functionality of the obtained PL. In addition, relevant questions concerning the definition of PL release criteria, including concentration ranges of specific growth factors in PL batches for various clinical indications, also need to be addressed. We are still far from a common definition of PL and standardized PL manufacture due to our limited knowledge of the mechanisms that mediate PL-promoting cell growth. Here, we concisely discuss aspects of PL as MSC culture supplement as a preliminary step towards an agreed definition of the required characteristics of PL for the requirements of manufacturers and users.
Collapse
Affiliation(s)
- Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.
| | - Eliana Amati
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Martina Bernardi
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| | - Richard Schäfer
- Department of Cell Therapeutics & Cell Processing, Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Sandhofstrasse 1, Frankfurt am Main, Germany
| | - Sabrina Sella
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy
| | - Francesco Rodeghiero
- Advanced Cellular Therapy Laboratory, Department of Cellular Therapy and Hematology, San Bortolo Hospital, Via Rodolfi 37, 36100, Vicenza, Italy.,Hematology Project Foundation, Contrà S. Francesco 41, Vicenza, Italy
| |
Collapse
|
65
|
Yang J, Zhu Y, Xu T, Pan C, Cai N, Huang H, Zhang L. The preservation of living cells with biocompatible microparticles. NANOTECHNOLOGY 2016; 27:265101. [PMID: 27189861 DOI: 10.1088/0957-4484/27/26/265101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | | | |
Collapse
|
66
|
Anitua E, Prado R, Padilla S, Orive G. Platelet-rich plasma therapy: another appealing technology for regenerative medicine? Regen Med 2016; 11:355-7. [DOI: 10.2217/rme-2015-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- BTI-Biotechnology Institute, Vitoria, Spain
| | | | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- BTI-Biotechnology Institute, Vitoria, Spain
| | - Gorka Orive
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- Laboratory of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Networking Biomedical Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, SLFPB-EHU, Vitoria, Spain
| |
Collapse
|
67
|
Heathman TRJ, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy 2016; 17:1524-35. [PMID: 26432558 DOI: 10.1016/j.jcyt.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. METHODS Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. RESULTS Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R(2) = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. CONCLUSIONS We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.
Collapse
Affiliation(s)
- Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Alexandra Stolzing
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, Leipzig University, Leipzig, Germany
| | - Qasim A Rafiq
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom; Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Alvin W Nienow
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom; Centre for Bioprocess Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Bo Kara
- FUJIFILM Diosynth Biotechnologies, Billingham, United Kingdom
| | - Christopher J Hewitt
- Centre for Biological Engineering, Loughborough University, Leicestershire, United Kingdom; Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom.
| |
Collapse
|
68
|
Rafiq QA, Twomey K, Kulik M, Leschke C, O'Dea J, Callens S, Gentili C, Barry FP, Murphy M. Developing an automated robotic factory for novel stem cell therapy production. Regen Med 2016; 11:351-4. [PMID: 27168080 DOI: 10.2217/rme-2016-0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Qasim A Rafiq
- Aston Medical Research Institute, School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Karen Twomey
- Tyndall National Institute, Life Sciences Interface Group, Lee Maltings, University College, Cork, Ireland
| | - Michael Kulik
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Christian Leschke
- Zellwerk GmbH, Ziegeleistraße 7, D-16727, Oberkrämer OT Eichstädt, Germany
| | - John O'Dea
- Crospon, Galway Business Park, Galway, H91 P2DK, Ireland
| | - Sarah Callens
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Frank P Barry
- Orbsen Therapeutics, Orbsen Building, NUIG, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing & Health Sciences, National University of Ireland, Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing & Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
69
|
van den Bos C, Keefe R, Schirmaier C, McCaman M. Therapeutic human cells: manufacture for cell therapy/regenerative medicine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 138:61-97. [PMID: 23934363 DOI: 10.1007/10_2013_233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
: Human primary cells (e.g. adult stem cells) as well as differentiated cells, including those of the immune system, have been found to be therapeutically useful and free of ethical concerns. Several products have received market authorization and numerous promising clinical trials are underway. We believe that such primary therapeutic cells will dominate the market for cell therapy applications for the foreseeable future. Consequently, production of such cellular products warrants attention and needs to be a fully controlled pharmaceutical process. Thus, where possible, such production should change from manufacture towards a truly scalable industrialized process for both allogeneic and autologous products. Here, we discuss manufacturing aspects of both autogeneic and allogeneic products, review the field, and provide historical context.
Collapse
|
70
|
Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ, Punreddy S, Rook MS. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
71
|
Heathman TR, Stolzing A, Fabian C, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy 2016; 18:523-35. [DOI: 10.1016/j.jcyt.2016.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 01/02/2023]
|
72
|
Heathman TR, Rafiq QA, Chan AK, Coopman K, Nienow AW, Kara B, Hewitt CJ. Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
73
|
Schnitzler A, Verma A, Aysola M, Murrell J, Rook M. Media and microcarrier surface must be optimized when transitioning mesenchymal stem/stromal cell expansion to stirred tank bioreactors. BMC Proc 2015. [PMCID: PMC4685419 DOI: 10.1186/1753-6561-9-s9-p57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
74
|
Sievers H, Hirschberg RM, Hiebl B, Hünigen H, Plendl J. Human microvascular endothelial cells displaying reduced angiogenesis and increased uptake of lipids during in vitro culture. Clin Hemorheol Microcirc 2015; 61:367-83. [PMID: 26444614 DOI: 10.3233/ch-152002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human microvascular ECs from the neonatal foreskin of two donors purchased from one distributor were used in an angiogenesis assay under the same culture conditions. Different angiogenic potency was apparent in these two batches (ECang and ECnon-ang). During the cultivation period of three weeks, ECang ran through all stages of angiogenesis starting from proliferation to migration up to the formation of three-dimensional capillary-like structures. Despite of expression of endothelial markers, ECnon-ang showed excessive intracellular storage of lipids in form of multilamellar bodies and decreased angiogenic potency in contrast to its counterpart, ECang. Results indicate that lipid metabolism differs in ECang versus ECnon-ang. This study points up that these differences are based on the different donors and presents a novel and valuable model for the study of mechanisms of atherosclerosis in endothelial cells in vitro.
Collapse
Affiliation(s)
- Henrieke Sievers
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Ruth M Hirschberg
- SFB 1112, Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| | - Bernhard Hiebl
- Center for Medical Basic Research, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hana Hünigen
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| |
Collapse
|
75
|
Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells. PLoS One 2015; 10:e0136621. [PMID: 26353112 PMCID: PMC4564274 DOI: 10.1371/journal.pone.0136621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Background Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation. Results 1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis. Conclusions/Significance Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects.
Collapse
|
76
|
Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, Oh S, Karnieli O. Concise Review: Process Development Considerations for Cell Therapy. Stem Cells Transl Med 2015; 4:1155-63. [PMID: 26315572 DOI: 10.5966/sctm.2014-0294] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The development of robust and well-characterized methods of production of cell therapies has become increasingly important as therapies advance through clinical trials toward approval. A successful cell therapy will be a consistent, safe, and effective cell product, regardless of the cell type or application. Process development strategies can be developed to gain efficiency while maintaining or improving safety and quality profiles. This review presents an introduction to the process development challenges of cell therapies and describes some of the tools available to address production issues. This article will provide a summary of what should be considered to efficiently advance a cellular therapy from the research stage through clinical trials and finally toward commercialization. The identification of the basic questions that affect process development is summarized in the target product profile, and considerations for process optimization are discussed. The goal is to identify potential manufacturing concerns early in the process so they may be addressed effectively and thus increase the probability that a therapy will be successful. SIGNIFICANCE The present study contributes to the field of cell therapy by providing a resource for those transitioning a potential therapy from the research stage to clinical and commercial applications. It provides the necessary steps that, when followed, can result in successful therapies from both a clinical and commercial perspective.
Collapse
Affiliation(s)
- Andrew Campbell
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Thomas Brieva
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Lior Raviv
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Jon Rowley
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Knut Niss
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Harvey Brandwein
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Steve Oh
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Ohad Karnieli
- International Society for Cellular Therapy Process and Product Development Subcommittee, Vancouver, British Columbia, Canada; Thermo Fisher Scientific, Inc., Grand Island, New York, USA; Celgene Cellular Therapeutics, Warren, New Jersey, USA; Pluristem Therapeutics Inc., Haifa, Israel; Rooster Bio Inc., Frederick, Maryland, USA; Novartis Pharmaceuticals, Morris Plains, New Jersey, USA; Pall Life Sciences (division of Pall Corp), Port Washington, New York, USA; Stem Cell Group, Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| |
Collapse
|
77
|
Heiblig M, Elhamri M, Michallet M, Thomas X. Adoptive immunotherapy for acute leukemia: New insights in chimeric antigen receptors. World J Stem Cells 2015; 7:1022-1038. [PMID: 26328018 PMCID: PMC4550626 DOI: 10.4252/wjsc.v7.i7.1022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/28/2014] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells (LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despite the introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors (CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding “living drug” specifically targeting the tumor-associated antigen, and ensure long-term anti-tumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.
Collapse
|
78
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
79
|
Russell KA, Koch TG. Equine platelet lysate as an alternative to fetal bovine serum in equine mesenchymal stromal cell culture - too much of a good thing? Equine Vet J 2015; 48:261-4. [PMID: 25772755 DOI: 10.1111/evj.12440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/08/2015] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Multipotent mesenchymal stromal cells (MSC) are often culture-expanded in vitro. Presently, expansion medium (EM) for MSC is supplemented with fetal bovine serum (FBS). However, increasing cost, variable composition and potential risks associated with bovine antigens call for alternatives. Platelet lysate (PL) has shown promise as an alternative supplement. OBJECTIVES To determine how equine umbilical cord blood (CB) MSC proliferate in EM enriched with PL or FBS at various concentrations. STUDY DESIGN Randomised dose escalation study. METHODS Platelet concentrate was generated from 5 equine whole blood samples through a double centrifugation method and standardised to 1 × 10(12) platelets/l prior to a freeze/thaw cycle to produce PL. Pooled PL or pooled FBS was added to EM at concentrations of 5% to 60%. Proliferation of 4 equine CB-MSC cultures was determined after 4 days using a resazurin semiquantitative assay. RESULTS Cord blood-MSC proliferated with a dose-dependent response with no significant difference found between PL and FBS up to a 30% concentration. Beyond 30%, proliferation fell in the PL-cultured cells, while continued dose-dependent proliferation was noted in the FBS-cultured cells. Despite reduced cell numbers in high PL concentrations, live/dead staining revealed that adherent cells remained viable. CONCLUSIONS Expansion medium enriched with PL can support short-term equine CB-MSC proliferation at conventional culture concentrations. Based on the unexpected suppression of CB-MSC at higher PL concentrations, an in vivo dose study is indicated to investigate if combinational therapies of CB-MSC and platelet-rich plasma are associated with synergistic or antagonistic effect on CB-MSC function.
Collapse
Affiliation(s)
- K A Russell
- Department of Biomedical Sciences, University of Guelph, Ontario, Canada
| | - T G Koch
- Department of Biomedical Sciences, University of Guelph, Ontario, Canada.,Department of Clinical Studies, Orthopaedic Research Lab, Aarhus University, Copenhagen, Denmark
| |
Collapse
|
80
|
Heathman TRJ, Glyn VAM, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ. Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol Bioeng 2015; 112:1696-707. [PMID: 25727395 PMCID: PMC5029583 DOI: 10.1002/bit.25582] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/02/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot‐sizes required for commercial production. The use of animal‐derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot‐to‐lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large‐scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum‐free hMSC manufacturing process. Human bone‐marrow derived hMSCs were expanded on fibronectin‐coated, non‐porous plastic microcarriers in 100 mL stirred spinner flasks at a density of 3 × 105 cells.mL−1 in serum‐free medium. The hMSCs were successfully harvested by our recently‐developed technique using animal‐free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post‐harvest viability of 99.63 ± 0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony‐forming potential. The hMSCs were held in suspension post‐harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum‐free vehicle solution using a controlled‐rate freezing process. Post‐thaw viability was 75.8 ± 1.4% with a similar 3 h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component‐free hMSC production process from expansion through to cryopreservation. Biotechnol. Bioeng. 2015;112: 1696–1707. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Veronica A M Glyn
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Andrew Picken
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Qasim A Rafiq
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.
| | - Alvin W Nienow
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Centre for Bioprocess Engineering, University of Birmingham, B15 2TT, UK
| | - Bo Kara
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Christopher J Hewitt
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET
| |
Collapse
|
81
|
Kaiser AD, Assenmacher M, Schröder B, Meyer M, Orentas R, Bethke U, Dropulic B. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther 2015; 22:72-8. [PMID: 25613483 PMCID: PMC4356749 DOI: 10.1038/cgt.2014.78] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital.
Collapse
Affiliation(s)
- A D Kaiser
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - B Schröder
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - M Meyer
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - R Orentas
- Lentigen Technology Inc., Gaithersburg, MD, USA
| | - U Bethke
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - B Dropulic
- Lentigen Technology Inc., Gaithersburg, MD, USA
| |
Collapse
|
82
|
Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement. Clin Transl Immunology 2015; 4:e31. [PMID: 25671129 PMCID: PMC4318490 DOI: 10.1038/cti.2014.31] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023] Open
Abstract
The manufacture of clinical grade cellular products for adoptive immunotherapy requires ex vivo culture and expansion of human T cells. One of the key components in manufacturing of T cell therapies is human serum (HS) or fetal bovine serum (FBS), which can potentially expose immunotherapy recipient to adventitious infectious pathogens and are thus considered as non-cGMP compliant for adoptive therapy. Here we describe a novel xeno-free serum replacement (SR) with defined components that can be reproducibly used for the production of clinical grade T-cell therapies in combination with several different cell culture media. Dynabeads CD3/CD28 Cell Therapy System (CTS)-activated or antigen-specific T cells expanded using the xeno-free SR, CTS Immune Cell SR, showed comparable growth kinetics observed with cell culture media supplemented with HS or FBS. Importantly the xeno-free SR supplemented medium supported the optimal expansion of T cells specific for subdominant tumour-associated antigens and promoted expansion of T cells with central memory T-cell phenotype, which is favourable for in vivo survival and persistence following adoptive transfer. Furthermore, T cells expanded using xeno-free SR medium were highly amenable to lentivirus-mediated gene transduction for potential application for gene-modified T cells. Taken together, the CTS Immune Cell SR provides a novel platform strategy for the manufacture of clinical grade adoptive cellular therapies.
Collapse
|
83
|
Gstraunthaler G, Lindl T, van der Valk J. A Severe Case of Fraudulent Blending of Fetal Bovine Serum Strengthens the Case for Serum-free Cell and Tissue Culture Applications. Altern Lab Anim 2014; 42:207-9. [DOI: 10.1177/026119291404200308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Toni Lindl
- Institut für Angewandte Zellkultur Munich Germany
| | - Jan van der Valk
- 3Rs-Centre Utrecht Life Sciences Utrecht University Utrecht The Netherlands
| |
Collapse
|
84
|
Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014; 123:2625-35. [PMID: 24578504 DOI: 10.1182/blood-2013-11-492231] [Citation(s) in RCA: 485] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cells redirected to specific antigen targets with engineered chimeric antigen receptors (CARs) are emerging as powerful therapies in hematologic malignancies. Various CAR designs, manufacturing processes, and study populations, among other variables, have been tested and reported in over 10 clinical trials. Here, we review and compare the results of the reported clinical trials and discuss the progress and key emerging factors that may play a role in effecting tumor responses. We also discuss the outlook for CAR T-cell therapies, including managing toxicities and expanding the availability of personalized cell therapy as a promising approach to all hematologic malignancies. Many questions remain in the field of CAR T cells directed to hematologic malignancies, but the encouraging response rates pave a wide road for future investigation.
Collapse
|
85
|
Newell LF, Deans RJ, Maziarz RT. Adult adherent stromal cells in the management of graft-versus-host disease. Expert Opin Biol Ther 2014; 14:231-46. [DOI: 10.1517/14712598.2014.866648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 2013; 39:49-60. [PMID: 23890063 DOI: 10.1016/j.immuni.2013.07.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/12/2023]
Abstract
Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available.
Collapse
Affiliation(s)
- Michael Kalos
- Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA.
| | | |
Collapse
|
87
|
Klára T, Csönge L, Janositz G, Csernátony Z, Lacza Z. Albumin-coated structural lyophilized bone allografts: a clinical report of 10 cases. Cell Tissue Bank 2013; 15:89-97. [DOI: 10.1007/s10561-013-9379-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/08/2013] [Indexed: 12/29/2022]
|
88
|
Rafiq QA, Coopman K, Hewitt CJ. Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng 2013. [DOI: 10.1016/j.coche.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet 2013; 30:315-23. [PMID: 23288664 DOI: 10.1007/s10815-012-9914-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Different laboratories around the world have succeeded in establishing human embryonic stem cell (hESC) lines. However, culture conditions vary considerably among the protocols used and the vast majority of the lines at some stage of their creation have been in contact with an animal derived component. One of the main problems to be overcome for the generation of a clinical-grade hESC line is the choice of a substrate and medium that allows derivation and culture, where animal derived components are kept to a minimum or completely excluded. MATERIALS AND METHODS The following review describes past and more recent achievements in the creation and culturing of hESC. It describes protocols, giving special attention to the matrices and supplements used for derivation, maintainance and cryostorage, considering whether they included defined, undefined and/or animal-derived components in their formulations. CONCLUSION This information shall be useful for the creation and choice of new substrates and supplements for future research in the field of hESC for therapeutic purposes.
Collapse
|