51
|
Sosińska P, Mikuła-Pietrasik J, Ryżek M, Naumowicz E, Książek K. Specificity of cytochemical and fluorescence methods of senescence-associated β-galactosidase detection for ageing driven by replication and time. Biogerontology 2014; 15:407-13. [PMID: 24878779 PMCID: PMC4090812 DOI: 10.1007/s10522-014-9505-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
Senescence-associated β-galactosidase (SA-β-Gal) is a widely used marker of senescent cells in vitro and in vivo. In this report, young and senescent human peritoneal mesothelial cells (HPMCs) and fragments of the omentum, from which these cells were isolated, were subjected to simultaneous examination of SA-β-Gal using two methods, i.e. cytochemical and fluorescent methods. The results obtained were confronted with the cumulative number of population doublings (CPD) and the calendar age of the tissue donor. The study showed that senescence of HPMCs proceeds with either an increased percentage of SA-β-Gal-positive cells or increased enzyme activity. Cytochemical SA-β-Gal staining in early-passage cultures negatively correlated with CPD values but not with donor age in both cell cultures and omentum specimens. Conversely, SA-β-Gal activity measured with the fluorescence method rose in proportion to the calendar age of the donor either in early-passage cultures or in primary cell isolates from omental tissue. At the same time it was not related to the CPD values. These findings may suggest that with respect to at least peritoneal mesothelial cells, the cytochemical and fluorescent methods of SA-β-Gal detection, though complementary, are informative for different levels of aging, i.e. the cytochemical approach for senescence in vitro and the fluorescence-based technique for organismal aging in vivo.
Collapse
Affiliation(s)
- Patrycja Sosińska
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str, 60-806, Poznań, Poland
| | | | | | | | | |
Collapse
|
52
|
Na D, Song Y, Jiang CG, Sun Z, Xu YY, Wang ZN, Zhao ZZ, Xu HM. Induction of apoptosis in human peritoneal mesothelial cells by gastric cancer cell supernatant promotes peritoneal carcinomatosis. Tumour Biol 2014; 35:8301-7. [DOI: 10.1007/s13277-014-2093-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 01/28/2023] Open
|
53
|
Stadlmann S, Feichtinger H, Mikuz G, Marth C, Zeimet AG, Herold M, Knabbe C, Offner FA. Interactions of human peritoneal mesothelial cells with serous ovarian cancer cell spheroids--evidence for a mechanical and paracrine barrier function of the peritoneal mesothelium. Int J Gynecol Cancer 2014; 24:192-200. [PMID: 24407573 DOI: 10.1097/igc.0000000000000036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ovarian carcinoma spreads by implantation of tumor cells onto the peritoneal mesothelium. We established a 3-dimensional coculture model to simulate the interactions of ovarian carcinoma cell aggregates with human peritoneal mesothelial cells (HPMC). METHODS Multicellular tumor spheroids (MCTS) of the human ovarian cancer cell line SK-OV-3 were directly inoculated onto either confluent HPMC monolayers or their submesothelial matrix or were cocultured with mesothelium without direct cellular contact. RESULTS AND DISCUSSIONS Inoculation of MCTS onto submesothelial matrix resulted in rapid attachment (within 30 minutes) of the tumor cell aggregates followed by rapid dissemination (within 12 hours) and growth of tumor cells. Intact mesothelium increased the time required for MCTS attachment (up to 180 minutes) and led to almost complete inhibition of tumor cell dissemination and to 47% tumor growth suppression. Bromodeoxyuridine incorporation into tumor cell nuclei was almost completely abolished in cocultured MCTS. Growth also was inhibited in MCTS treated with supernatants of HPMC. Analysis of coculture supernatants revealed that HPMC-derived transforming growth factor β (TGF-β) was almost completely bound by MCTS. Addition of a function-blocking anti-TGF-β antibody (30 μg/mL) to the cocultures abrogated the growth inhibitory effect of the mesothelium by 50%. CONCLUSIONS The present model provides a dynamic system to study the complex interactions of ovarian carcinoma cells with HPMC over extended periods and suggests that the mesothelium constitutes a mechanical and partly TGF-β-mediated paracrine barrier to the progression of ovarian cancer.
Collapse
Affiliation(s)
- Sylvia Stadlmann
- *Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland; Departments of †Pathology, ‡Gynecology and Obstetrics, and §Internal Medicine, Innsbruck Medical University, Innsbruck, Austria; ∥Department of Clinical Chemistry, Robert Bosch Hospital, Stuttgart, Germany; and ¶Institute of Pathology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Synthetic resveratrol analogue, 3,3',4,4',5,5'-hexahydroxy-trans-stilbene, accelerates senescence in peritoneal mesothelium and promotes senescence-dependent growth of gastrointestinal cancers. Int J Mol Sci 2013; 14:22483-98. [PMID: 24240809 PMCID: PMC3856075 DOI: 10.3390/ijms141122483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
3,3′,4,4′,5,5′-Hexahydroxy-trans-stilbene (M8) is a synthetic resveratrol derivative, advertised as a candidate drug highly effective against numerous malignancies. Because multiple tumors prone to M8 frequently metastasize into the peritoneal cavity, this study was aimed at establishing the effect of M8 on the growth and senescence of human peritoneal mesothelial cells (HPMCs), the largest cell population within the peritoneum, actively involved in the intraperitoneal spread of cancer. The study showed that M8, used at the highest non-toxic dose of 10 μM, impairs proliferation and accelerates senescence in cultured HPMCs via an oxidative stress-dependent mechanism. At the same time, soluble factors released to the environment by HPMCs that senesced prematurely in response to M8 promoted growth of colorectal and pancreatic carcinomas in vitro. These findings indicate that M8 may indirectly—through the modification of normal (mesothelial) cells phenotype—facilitate an expansion of cancer cells, which challenges the postulated value of this stilbene in chemotherapy.
Collapse
|
55
|
Lv ZD, Wang HB, Dong Q, Kong B, Li JG, Yang ZC, Qu HL, Cao WH, Xu HM. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol Cell Biochem 2013; 377:177-185. [PMID: 23392771 DOI: 10.1007/s11010-013-1583-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/30/2013] [Indexed: 12/24/2022]
Abstract
Peritoneal metastases are one reason for the poor prognosis of scirrhous gastric cancer (SGC), and myofibroblast provides a favorable environment for the peritoneal dissemination of gastric cancer. The aim of this study was to determine whether myofibroblast originates from peritoneal mesothelial cells under the influence of the tumor microenvironment. Immunohistochemical studies of peritoneal biopsy specimens from patients with peritoneal lavage cytological (+) status demonstrate the expression of the epithelial markers cytokeratin in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. To confirm this hypothesis in vitro, we co-incubated mesothelial cells with SGC or non-SGC to investigate morphology and function changes. As we expected, mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with loss of epithelial morphology and decrease in the expression of cytokeratin and E-cadherin when exposed to conditioned medium from HSC-39, and the induction of mesothelial cells can be abolished using a neutralizing antibody to transforming growth factor-beta1 (TGF-β1) as well as by pre-treatment with SB431542. Moreover, we found that these mesothelial cells-derived cells exhibit functional properties of myofibroblasts, including the ability to increase adhesion and invasion of SGC. In summary, our current data demonstrated that mesothelial cells are a source of myofibroblasts under the SGC microenvironment which provide a favorable environment for the dissemination of gastric cancer; TGF-β1 produced by autocrine/paracrine in peritoneal cavity may play a central role in this pathogenesis.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mesothelial cell: a multifaceted model of aging. Ageing Res Rev 2013; 12:595-604. [PMID: 23415666 DOI: 10.1016/j.arr.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
Human peritoneal mesothelial cells (HPMCs) dominate within the peritoneal cavity and thus play a central role in a variety of intraperitoneal processes, including the transport of water and solutes, inflammation, host response, angiogenesis, and extracellular matrix remodeling. In addition, they contribute to the development of abdominal adhesions, peritonitis, endometriosis, cancer cell metastases, and peritoneal dialysis complications. For less than a decade the primary cultures of omental HPMCs have also been used as an experimental tool in studies on cellular aging. This paper provides the first comprehensive overview of the current state of art on molecular mechanisms underlying HPMC senescence in vitro. Special attention is paid to the causes of the very fast dynamics of HPMC senescence, and in particular to the role of non-telomeric DNA damage, the autocrine activity of TGF-β1, and the causative effects of oxidative stress. In addition, some clinical manifestations of HPMC senescence will be discussed, including its interplay with organismal aging, peritoneal dialysis, and cancer progression.
Collapse
|
57
|
Ranieri D, Raffa S, Parente A, Rossi Del Monte S, Ziparo V, Torrisi MR. High adhesion of tumor cells to mesothelial monolayers derived from peritoneal wash of disseminated gastrointestinal cancers. PLoS One 2013; 8:e57659. [PMID: 23451255 PMCID: PMC3581532 DOI: 10.1371/journal.pone.0057659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
The role of the mesothelial layer in the peritoneal spreading of cancer cells is only partially clarified. Here we attempted to better define the mesothelial contribution to the tumor cell adhesion using a direct adhesion test applied to human primary cultures of mesothelial cells (HPMCs) derived from the peritoneal washes of patients with gastric and colorectal cancers. Gastric and colon carcinoma cells were seeded on different mesothelial monolayers and quantitative fluorescence analysis was performed to analyze their growth and adhesive properties. The adhesion of the cancer cells was not affected by the origin of the HPMCs when derived from patients with different cancers or with benign disease. In contrast, the high levels of ICAM1 expression and ROS production, which characterize these senescent mesothelial cells, enhanced the tumor cell adhesion. These results suggest that the mesothelial adhesive properties are dependent on the cell senescence, while are not affected by the tumor environment. The use of peritoneal washes as a source to isolate HPMCs provides a practical and reliable tool for the in vitro analysis of the mesothelial conditions affecting the peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Danilo Ranieri
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Roma, Roma, Italy
| | - Salvatore Raffa
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Roma, Roma, Italy
- Sant’Andrea Hospital, Roma, Italy
- * E-mail:
| | - Andrea Parente
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Roma, Roma, Italy
| | | | - Vincenzo Ziparo
- Department of General Surgery, Sapienza University of Roma, Roma, Italy
- Sant’Andrea Hospital, Roma, Italy
| | - Maria Rosaria Torrisi
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Clinical and Molecular Medicine, Sapienza University of Roma, Roma, Italy
- Sant’Andrea Hospital, Roma, Italy
| |
Collapse
|
58
|
Connective tissue growth factor is a positive regulator of epithelial–mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells. Cytokine 2013; 61:173-80. [DOI: 10.1016/j.cyto.2012.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/02/2012] [Accepted: 09/20/2012] [Indexed: 02/01/2023]
|
59
|
Abstract
Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial–Mesenchymal Transition (EMT). EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM) probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor) is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor). Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.
Collapse
Affiliation(s)
- Ashish Misra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chhiti Pandey
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (SKS); (TT)
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (SKS); (TT)
| |
Collapse
|
60
|
Kenny HA, Nieman KM, Mitra AK, Lengyel E. The first line of intra-abdominal metastatic attack: breaching the mesothelial cell layer. Cancer Discov 2012; 1:100-2. [PMID: 22013555 DOI: 10.1158/2159-8290.cd-11-0117] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iwanicki and colleagues reveal that ovarian cancer spheroids clear mesothelial cells which cover the surface of the abdominal cavity using myosin-generated force.
Collapse
Affiliation(s)
- Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology - Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
61
|
Kaja S, Hilgenberg JD, Collins JL, Shah AA, Wawro D, Zimmerman S, Magnusson R, Koulen P. Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:081412-1. [PMID: 23224173 PMCID: PMC3381041 DOI: 10.1117/1.jbo.17.8.081412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ovarian carcinoma has the highest lethality rate of gynecologic tumors, largely attributed to the late-stage diagnosis of the disease. Reliable tools for both accurate diagnosis and early detection of disease onset are lacking, and presently less than 20% of ovarian cancers are detected at an early stage. Protein biomarkers that allow the discrimination of early and late stages of ovarian serous carcinomas are urgently needed as they would enable monitoring pre-symptomatic aspects of the disease, disease progression, and the efficacy of intervention therapies. We compare the absolute and relative protein levels of six protein biomarkers for ovarian cancer in five different established ovarian cancer cell lines, utilizing both quantitative immunoblot analysis and a guided-mode resonance (GMR) bioassay detection system that utilizes a label-free optical biosensor readout. The GMR sensor approach provided highly accurate, consistent, and reproducible quantification of protein biomarkers as validated by quantitative immunoblotting, as well as enhanced sensitivity, and is therefore suitable for quantification and detection of novel biomarkers for ovarian cancer. We identified fibronectin, apolipoprotein A1, and TIMP3 as potential protein biomarkers for the differential diagnosis of primary versus metastatic ovarian carcinoma. Future studies are needed to confirm the suitability of protein biomarkers tested herein in patient samples.
Collapse
Affiliation(s)
- Simon Kaja
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Jill D. Hilgenberg
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Julie L. Collins
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Anna A. Shah
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
| | - Debra Wawro
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Shelby Zimmerman
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Robert Magnusson
- Resonant Sensors Incorporated (RSI), 416 Yates Street, NH 518, Arlington, Texas 76010
| | - Peter Koulen
- University of Missouri, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, Missouri 64108
- Address all correspondence to: Peter Koulen, Vision Research Center and Departments of Ophthalmology and Basic Medical Science, University of Missouri, Kansas City, School of Medicine, 2411 Holmes St., Kansas City, Missouri 64108. Tel: +1-816-404-1834; Fax: +1-816-404-1825; E-mail:
| |
Collapse
|
62
|
Mikuła-Pietrasik J, Kuczmarska A, Kucińska M, Murias M, Wierzchowski M, Winckiewicz M, Staniszewski R, Bręborowicz A, Książek K. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial cell-dependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 2012; 15:361-76. [PMID: 22451299 PMCID: PMC3409370 DOI: 10.1007/s10456-012-9266-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/13/2012] [Indexed: 11/19/2022]
Abstract
We examined the effect of resveratrol (RVT) and its two derivatives (3,3′,4,4′-tetrahydroxy-trans-stilbene and 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene) on human peritoneal mesothelial cell (HPMC)-dependent angiogenesis in vitro. To this end, angiogenic activity of endothelial cells (HUVEC, HMVEC, and HMEC-1) was monitored upon their exposure to conditioned medium (CM) from young and senescent HPMCs treated with stilbenes or to stilbenes themselves. Results showed that proliferation and migration of endothelial cells were inhibited in response to indirect (HPMC-dependent) or direct RVT activity. This effect was associated with decreased secretion of VEGF and IL-8/CXCL8 by HPMCs treated with RVT, which confirmed the experiments with recombinant forms of these angiogenic agents. Angiogenic activity of endothelial cells treated with CM from HPMCs exposed to RVT analogues was more effective. Improved migration was particularly evident in cells exposed to CM from senescent HPMCs. Upon direct treatment, RVT derivatives stimulated proliferation (but not migration) of HUVECs, and failed to affect the behaviour of HMVEC and HMEC-1 cells. These compounds stimulated production of VEGF and IL-8/CXCL8 by HPMCs. Studies with neutralizing antibodies against angiogenic factors revealed that augmented angiogenic reactions of endothelial cells exposed to CM from HPMC treated with RVT analogues were related to enhanced production of VEGF and IL-8/CXCL8. Collectively, these findings indicate that RVT and its synthetic analogues divergently alter the secretion of the angiogenic factors by HPMCs, and thus modulate HPMC-dependent angiogenic responses in the opposite directions. This may have implications for the attempts of practical employment of the stilbenes for treatment of pathologies proceeding with abnormal vascularisation of the peritoneal tissue.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology, Poznań University of Medical Sciences, Święcickiego 6 Str., 60-781, Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Davidowitz RA, Iwanicki MP, Brugge JS. In vitro mesothelial clearance assay that models the early steps of ovarian cancer metastasis. J Vis Exp 2012:3888. [PMID: 22371143 DOI: 10.3791/3888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer related deaths in the United States(1). Despite a positive initial response to therapies, 70 to 90 percent of women with ovarian cancer develop new metastases, and the recurrence is often fatal(2). It is, therefore, necessary to understand how secondary metastases arise in order to develop better treatments for intermediate and late stage ovarian cancer. Ovarian cancer metastasis occurs when malignant cells detach from the primary tumor site and disseminate throughout the peritoneal cavity. The disseminated cells can form multicellular clusters, or spheroids, that will either remain unattached, or implant onto organs within the peritoneal cavity(3) (Figure 1, Movie 1). All of the organs within the peritoneal cavity are lined with a single, continuous, layer of mesothelial cells(4-6) (Figure 2). However, mesothelial cells are absent from underneath peritoneal tumor masses, as revealed by electron micrograph studies of excised human tumor tissue sections(3,5-7) (Figure 2). This suggests that mesothelial cells are excluded from underneath the tumor mass by an unknown process. Previous in vitro experiments demonstrated that primary ovarian cancer cells attach more efficiently to extracellular matrix than to mesothelial cells(8), and more recent studies showed that primary peritoneal mesothelial cells actually provide a barrier to ovarian cancer cell adhesion and invasion (as compared to adhesion and invasion on substrates that were not covered with mesothelial cells)(9,10). This would suggest that mesothelial cells act as a barrier against ovarian cancer metastasis. The cellular and molecular mechanisms by which ovarian cancer cells breach this barrier, and exclude the mesothelium have, until recently, remained unknown. Here we describe the methodology for an in vitro assay that models the interaction between ovarian cancer cell spheroids and mesothelial cells in vivo (Figure 3, Movie 2). Our protocol was adapted from previously described methods for analyzing ovarian tumor cell interactions with mesothelial monolayers(8-16), and was first described in a report showing that ovarian tumor cells utilize an integrin -dependent activation of myosin and traction force to promote the exclusion of the mesothelial cells from under a tumor spheroid(17). This model takes advantage of time-lapse fluorescence microscopy to monitor the two cell populations in real time, providing spatial and temporal information on the interaction. The ovarian cancer cells express red fluorescent protein (RFP) while the mesothelial cells express green fluorescent protein (GFP). RFP-expressing ovarian cancer cell spheroids attach to the GFP-expressing mesothelial monolayer. The spheroids spread, invade, and force the mesothelial cells aside creating a hole in the monolayer. This hole is visualized as the negative space (black) in the GFP image. The area of the hole can then be measured to quantitatively analyze differences in clearance activity between control and experimental populations of ovarian cancer and/ or mesothelial cells. This assay requires only a small number of ovarian cancer cells (100 cells per spheroid X 20-30 spheroids per condition), so it is feasible to perform this assay using precious primary tumor cell samples. Furthermore, this assay can be easily adapted for high throughput screening.
Collapse
|
64
|
Pathophysiology of the peritoneal membrane during peritoneal dialysis: the role of hyaluronan. J Biomed Biotechnol 2011; 2011:180594. [PMID: 22203782 PMCID: PMC3238805 DOI: 10.1155/2011/180594] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 01/28/2023] Open
Abstract
During peritoneal dialysis (PD), constant exposure of mesothelial cells to bioincompatible PD solutions results in the denudation of the mesothelial monolayer and impairment of mesothelial cell function. Hyaluronan, a major component of extracellular matrices, is synthesized by mesothelial cells and contributes to remesothelialization, maintenance of cell phenotype, and tissue remodeling and provides structural support to the peritoneal membrane. Chronic peritoneal inflammation is observed in long-term PD patients and is associated with increased hyaluronan synthesis. During inflammation, depolymerization of hyaluronan may occur with the generation of hyaluronan fragments. In contrast to native hyaluronan which offers a protective role to the peritoneum, hyaluronan fragments exacerbate inflammatory and fibrotic processes and therefore assist in the destruction of the tissue. This paper will discuss the contribution of mesothelial cells to peritoneal membrane alterations that are induced by PD and the putative role of hyaluronan in these processes.
Collapse
|
65
|
Lv ZD, Na D, Liu FN, Du ZM, Sun Z, Li Z, Ma XY, Wang ZN, Xu HM. Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:139. [PMID: 21034459 PMCID: PMC2984409 DOI: 10.1186/1756-9966-29-139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 10/29/2010] [Indexed: 12/11/2022]
Abstract
Background Peritoneal dissemination is one of the main causes of death in gastric cancer patients. Transforming growth factor-beta1 (TGF-β1), one of the most potent fibrotic stimuli for mesothelial cells, may play a key role in this processing. The purpose of this study is to elucidate the effects of TGF-β1 on regulation of gastric cancer adhesion to mesothelial cells. Methods Peritoneal tissues and peritoneal wash fluid were obtained for hematoxylin and eosin staining or ELISA to measure fibrosis and TGF-β1 levels, respectively. The peritoneal mesothelial cell line, HMrSV5, was used to determine the role of TGF-β1 in regulation of gastric cancer cell adhesion to mesothelial cells and expression of collagen, fibronectin, and Smad 2/3 by using adhesion assay, western blot, and RT-PCR. Results The data showed that TGF-β1 treatment was able to induce collagen III and fibronectin expression in the mesothelial cells, which was associated with an increased adhesion ability of gastric cancer cells, but knockdown of minimal sites of cell binding domain of extracellular matrix can partially inhibit these effects. Conclusion Peritoneal fibrosis induced by TGF-β1 may provide a favorable environment for the dissemination of gastric cancer.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Hu J, Friedman E. Depleting Mirk Kinase Increases Cisplatin Toxicity in Ovarian Cancer Cells. Genes Cancer 2010; 1:803-811. [PMID: 21113238 PMCID: PMC2989622 DOI: 10.1177/1947601910377644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2010] [Accepted: 06/11/2010] [Indexed: 02/06/2023] Open
Abstract
Cisplatin-based regimens are the standard of care for epithelial carcinoma of the ovary. Since cisplatin is known to increase intracellular levels of toxic reactive oxygen species (ROS), an increase in cisplatin toxicity selectively in cancer cells could result from further increasing the cisplatin-elevated ROS levels by targeting antioxidant genes upregulated in ovarian cancers. The serine/threonine kinase Mirk/dyrk1B is a transcriptional co-activator which increased the expression of the antioxidant genes superoxide dismutase 2 and ferroxidase in ovarian cancer cells. As a result, depletion of Mirk increased cellular ROS levels in each of 4 ovarian cancer cell lines. Mirk depletion averaged only about 4 fold, yet combined with cisplatin treatment enabled low levels of drug to increase ROS to toxic levels in both SKOV3 and TOV21G ovarian cancer cells. Lowering ROS levels by treatment with N-acetyl cysteine limited cisplatin toxicity, resulting in higher cell numbers and decreased cleavage of the apoptotic proteins PARP and caspase 3. Mirk has also been shown to block cells in G1 by inducing proteolysis of cyclin D1. Mirk depletion increased cyclin D1 levels in 3 of 4 ovarian cancer cell lines, implying that some Mirk depleted cells could more readily enter cycle, potentially increasing their sensitivity to cisplatin. Since Mirk is upregulated in a large subset of human ovarian cancers, but is expressed at low levels in most normal tissues, and embryonic knockout of Mirk results in viable and fertile mice, targeting Mirk may sensitize ovarian cancers to lower levels of cisplatin, while sparing normal tissues.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, Upstate Medical University, Syracuse, NY, USA
| | - Eileen Friedman
- Pathology Department, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
67
|
Ksiazek K, Mikuła-Pietrasik J, Catar R, Dworacki G, Winckiewicz M, Frydrychowicz M, Dragun D, Staniszewski R, Jörres A, Witowski J. Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium. Int J Cancer 2010; 127:293-303. [PMID: 19904754 DOI: 10.1002/ijc.25036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) has been implicated in adhesion of colorectal and pancreatic cancer cells (of the SW480 and PSN-1 line, respectively) to the peritoneal mesothelium. It has been demonstrated that ICAM-1 expression increases with senescence in some cell types, however, the significance of this phenomenon in the context of malignant dissemination remains elusive. In this report we show that the adherence of SW480 and PSN-1 cells to senescent human omentum-derived mesothelial cells (HOMCs) in vitro is greater than to early-passage cells and that the effect is mediated by ICAM-1. Senescent HOMCs display increased expression of ICAM-1 mRNA and cell surface protein. The development of this phenotype is related to increased oxidative stress in senescent cells. The augmented ICAM-1 expression in HOMCs can be reduced by culturing cells with antioxidants; in contrast, exposure of HOMCs to an oxidant, t-BHP, leads to cellular senescence and increased ICAM-1 expression. The effect is partly mediated by activation of p38 MAPK and AP-1 signaling pathways. Finally, culture of HOMCs in the presence of a strong antioxidant, PBN, significantly reduces the senescence-associated increase in SW480 and PSN-1 cancer cell binding. These results indicate that increased oxidative stress and increased expression of ICAM-1 in senescent HOMCs may facilitate peritoneal adhesion of selected colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Krzysztof Ksiazek
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|