51
|
van der Maarel SM, Tawil R, Tapscott SJ. Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 2011; 17:252-8. [PMID: 21288772 PMCID: PMC3092836 DOI: 10.1016/j.molmed.2011.01.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 01/10/2023]
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center, Department of Human Genetics, Albinusdreef 2, 2333 ZA, Leiden, Netherlands. Phone: +31 71 526 9480, Fax: +31 71 526 8285
| | - Rabi Tawil
- University of Rochester Medical Center, Department of Neurology, POBox 673, 601 Elmwood Avenue, Rochester, NY 14642 USA. Phone: 1-585-275-6372, FAX: 1-585-273-1255
| | - Stephen J. Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA. Phone: 1-206-667-4499, FAX 1-206-667-6524
| |
Collapse
|
52
|
Cabianca DS, Gabellini D. The cell biology of disease: FSHD: copy number variations on the theme of muscular dystrophy. J Cell Biol 2010; 191:1049-60. [PMID: 21149563 PMCID: PMC3002039 DOI: 10.1083/jcb.201007028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD.
Collapse
Affiliation(s)
- Daphne Selvaggia Cabianca
- International PhD Program in Cellular and Molecular Biology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
- Dulbecco Telethon Institute, 20132 Milan, Italy
| |
Collapse
|
53
|
Tsumagari K, Chen D, Hackman JR, Bossler AD, Ehrlich M. FSH dystrophy and a subtelomeric 4q haplotype: a new assay and associations with disease. J Med Genet 2010; 47:745-51. [PMID: 20710047 DOI: 10.1136/jmg.2009.076703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease associated with contraction of arrays of tandem 3.3-kb units (D4Z4) on subtelomeric 4q. Disease-linked arrays usually have fewer than 11 repeat units. Equally short D4Z4 arrays at subtelomeric 10q are not linked to FSHD. The newly described 4qA161 haplotype, which is more prevalent in pathogenic 4q alleles, involves sequences in and near D4Z4. METHODS We developed two new assays for 4qA161, which are based upon direct sequencing of PCR products or detecting restriction fragment length polymorphisms. They were used to analyse single nucleotide polymorphisms (SNPs) indicative of 4q161 alleles. RESULTS All (35/35) FSHD patients had one or two 4qA161 alleles (60% or 40%, respectively). In contrast, 46% (21/46) of control individuals had no 4qA161 allele (p<10(-4)), and 26% had homozygous 4qB163 alleles. CONCLUSIONS Our results from a heterogeneous population are consistent with the previously described association of the 4qA161 haplotype with FSHD, but a causal association with pathogenesis is uncertain. In addition, we found that haplotype analysis is complicated by the presence of minor 10q alleles. Nonetheless, our sequencing assay for the 4qA161allele can enhance molecular diagnosis of FSHD, including prenatal diagnosis, and is simpler to perform than the previously described assay.
Collapse
Affiliation(s)
- K Tsumagari
- Biochemistry Department, Tulane Medical School, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
54
|
Abstract
Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
55
|
Abstract
This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is ‘The trainee consistently demonstrates a knowledge of the pathophysiology of various specific impairments including lower motor neuron weakness’ and ‘management approaches for specific impairments including lower motor neuron weakness’. This article explores weakness as a lower motor symptom. Weakness as a primary impairment of neuromuscular diseases is addressed, with recognition of the phenomenon of disuse atrophy, and how weakness impacts on the functional abilities of people with myopathy and neuropathy. Interventions to reduce weakness or address the functional consequences of weakness are evaluated with consideration of safety and clinical application. Learning outcomes: This paper will allow readers to: (1) appraise the contribution of research in rehabilitation of lower motor neuron weakness to clinical decision making and (2) engage with the issues that arise when researching rehabilitation interventions for lower motor neuron weakness. Aim of article: Impairments associated with neuromuscular conditions can lead to significant functional difficulties that can impact on a person’s daily participation. This article focuses on the primary impairment of weakness and explores the research evidence for rehabilitation interventions that directly influence weakness or address the impact of weakness on function.
Collapse
Affiliation(s)
- Gita M Ramdharry
- St George's School of Physiotherapy, Faculty of Health and Social Care Sciences, St George's University of London and Kingston University, UK,
| |
Collapse
|
56
|
Liu Q, Jones TI, Tang VW, Brieher WM, Jones PL. Facioscapulohumeral muscular dystrophy region gene-1 (FRG-1) is an actin-bundling protein associated with muscle-attachment sites. J Cell Sci 2010; 123:1116-23. [PMID: 20215405 DOI: 10.1242/jcs.058958] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vertebrates, overexpression of facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) recapitulates the pathophysiology exhibited by FSHD patients, although the role of FRG1 in FSHD remains controversial and no precise function for FRG1 has been described in any organism. To gain insight into the function and potential role of FRG1 in FSHD, we analyzed the highly conserved Caenorhabditis elegans ortholog, frg-1. C. elegans body-wall muscles contain two distinct subcellular pools of FRG-1: nuclear FRG-1, concentrated in the nucleoli; and cytoplasmic FRG-1, associated with the Z-disk and costamere-like structures known as dense bodies. Functionally, we demonstrate that FRG-1 is an F-actin-bundling protein, consistent with its localization to dense bodies; this activity is conserved in human FRG1. This is particularly intriguing because it places FRG-1 along side the list of dense-body components whose vertebrate orthologs are involved in the myriad myopathies associated with disrupted costameres and Z-disks. Interestingly, overexpressed FRG-1 preferentially accumulates in the nucleus and, when overexpressed specifically from the frg-1 promoter, disrupts the adult ventral muscle structure and organization. Together, these data further support a role for FRG1 overexpression in FSHD pathophysiology and reveal the previously unsuspected direct involvement of FRG-1 in muscle structure and integrity.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
57
|
Angelucci F, Colantoni L. Facioscapulohumeral muscular dystrophy: do neurotrophins play a role? Muscle Nerve 2010; 41:120-7. [PMID: 19813193 DOI: 10.1002/mus.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the molecular defect of facioscapulohumeral muscular dystrophy (FSHD) is well established and involves the contraction of the polymorphic 3.3 kb D4Z4 repeat on the subtelomeric region of chromosome 4q35, the pathologic effects of this deletion remain largely unknown. As a consequence, no specific treatment for FSHD is at present available. Thus, there is the need to explore new areas in an attempt to better characterize pathophysiological alterations in FSHD that might be useful for managing the disease. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) are a class of proteins involved in the development, maintenance, and function of neurons of the peripheral and central nervous systems. In addition, neurotrophins and their RNAs are expressed in muscle, where they have a role in development and regeneration. In this article we put together the experimental evidence that indicates neurotrophins might be involved in the pathophysiology of FSHD and discuss the possible implications of this assumption.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, 00179, Rome, Italy.
| | | |
Collapse
|
58
|
Ansseau E, Laoudj-Chenivesse D, Marcowycz A, Tassin A, Vanderplanck C, Sauvage S, Barro M, Mahieu I, Leroy A, Leclercq I, Mainfroid V, Figlewicz D, Mouly V, Butler-Browne G, Belayew A, Coppée F. DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation. PLoS One 2009; 4:e7482. [PMID: 19829708 PMCID: PMC2759506 DOI: 10.1371/journal.pone.0007482] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Aline Marcowycz
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Sébastien Sauvage
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Marietta Barro
- INSERM ERI 25 Muscle et Pathologies, CHU A. de Villeneuve, Montpellier, France
| | - Isabelle Mahieu
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Axelle Leroy
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - India Leclercq
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | | | - Denise Figlewicz
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vincent Mouly
- Institute of Myology, Platform for human cell culture, Paris, France
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, University of Mons-Hainaut, 6, Mons, Belgium
- * E-mail:
| |
Collapse
|
59
|
Fazioskapulohumerale Muskeldystrophie. MED GENET-BERLIN 2009. [DOI: 10.1007/s11825-009-0176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zusammenfassung
Die fazioskapulohumerale Muskeldystrophie (FSHD, MIM 158900) zählt zu den häufigsten Muskeldystrophien mit einer Prävalenz von mindestens 1:20.000. Bei den meisten Patienten manifestiert sich die langsam progrediente Myopathie in der 2. Lebensdekade mit einer Schwäche der Gesichts- und Schultermuskulatur sowie der Oberarme. Typischerweise sind die unteren Extremitäten erst im weiteren Verlauf betroffen. In selteneren kindlichen Fällen treten die Symptome schon in der 1. Dekade auf, und die Erkrankung verläuft schwer mit besonders starker Beteiligung der Gesichtsmuskulatur. Die Genetik der FSHD ist einzigartig und bis heute nicht endgültig geklärt. Ein direkter Gendefekt ist nicht bekannt. Es gibt eine enge Assoziation zur Deletion von subtelomerischen D4Z4-Repeat-Einheiten auf Chromosom 4q. Man vermutet einen Positionseffekt dieser D4Z4-Repeats auf zentromerwärts gelegene Gene, die bei Patienten in der Muskulatur überexprimiert werden. Die molekulargenetische Diagnostik erfolgt durch den Nachweis eines verkürzten D4Z4-Fragments im Southern-Blot. Erschwerend kommt hinzu, dass 10q-Repeat-Einheiten zu D4Z4-Einheiten hochhomolog sind und beide untereinander ausgetauscht werden können. Nur verkürzte Repeatfragmente in einer speziellen 4q-Umgebung sind pathogen.
Collapse
|
60
|
Arashiro P, Eisenberg I, Kho AT, Cerqueira AMP, Canovas M, Silva HCA, Pavanello RCM, Verjovski-Almeida S, Kunkel LM, Zatz M. Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers. Proc Natl Acad Sci U S A 2009; 106:6220-5. [PMID: 19339494 PMCID: PMC2664154 DOI: 10.1073/pnas.0901573106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Indexed: 01/19/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder that has been associated with a contraction of 3.3-kb repeats on chromosome 4q35. FSHD is characterized by a wide clinical inter- and intrafamilial variability, ranging from wheelchair-bound patients to asymptomatic carriers. Our study is unique in comparing the gene expression profiles from related affected, asymptomatic carrier, and control individuals. Our results suggest that the expression of genes on chromosome 4q is altered in affected and asymptomatic individuals. Remarkably, the changes seen in asymptomatic samples are largely in products of genes encoding several chemokines, whereas the changes seen in affected samples are largely in genes governing the synthesis of GPI-linked proteins and histone acetylation. Besides this, the affected patient and related asymptomatic carrier share the 4qA161 haplotype. Thus, these polymorphisms by themselves do not explain the pathogenicity of the contracted allele. Interestingly, our results also suggest that the miRNAs might mediate the regulatory network in FSHD. Together, our results support the previous evidence that FSHD may be caused by transcriptional dysregulation of multiple genes, in cis and in trans, and suggest some factors potentially important for FSHD pathogenesis. The study of the gene expression profiles from asymptomatic carriers and related affected patients is a unique approach to try to enhance our understanding of the missing link between the contraction in D4Z4 repeats and muscle disease, while minimizing the effects of differences resulting from genetic background.
Collapse
Affiliation(s)
- Patricia Arashiro
- Human Genome Research Center, Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, Brazil
| | - Iris Eisenberg
- The Howard Hughes Medical Institute, Program in Genomics, Division of Genetics
| | - Alvin T. Kho
- Informatics Program, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Antonia M. P. Cerqueira
- Human Genome Research Center, Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, Brazil
| | - Marta Canovas
- Human Genome Research Center, Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, Brazil
| | - Helga C. A. Silva
- Brazilian Center of Study, Diagnosis, and Investigation of Malignant Hyperthermia, Department of Surgery, Discipline of Anaesthesia, Pain and Intensive Care, University Federal of São Paulo, 04024-002, São Paulo, Brazil; and
| | - Rita C. M. Pavanello
- Human Genome Research Center, Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Louis M. Kunkel
- The Howard Hughes Medical Institute, Program in Genomics, Division of Genetics
| | - Mayana Zatz
- Human Genome Research Center, Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|