51
|
How Imaging Can Impact Clinical Trial Design: Molecular Imaging as a Biomarker for Targeted Cancer Therapy. Cancer J 2016; 21:218-24. [PMID: 26049702 DOI: 10.1097/ppo.0000000000000116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to measure biochemical and molecular processes to guide cancer treatment represents a potentially powerful tool for trials of targeted cancer therapy. These assays have traditionally been performed by analysis of tissue samples. However, more recently, functional and molecular imaging has been developed that is capable of in vivo assays of cancer biochemistry and molecular biology and is highly complementary to tissue-based assays. Cancer imaging biomarkers can play a key role in increasing the efficacy and efficiency of therapeutic clinical trials and also provide insight into the biologic mechanisms that bring about a therapeutic response. Future progress will depend on close collaboration between imaging scientists and cancer physicians and on public and commercial sponsors, to take full advantage of what imaging has to offer for clinical trials of targeted cancer therapy. This review will provide examples of how molecular imaging can inform targeted cancer clinical trials and clinical decision making by (1) measuring regional expression of the therapeutic target, (2) assessing early (pharmacodynamic) response to treatment, and (3) predicting therapeutic outcome. The review includes a discussion of basic principles of molecular imaging biomarkers in cancer, with an emphasis on those methods that have been tested in patients. We then review clinical trials designed to evaluate imaging tests as integrated markers embedded in a therapeutic clinical trial with the goal of validating the imaging tests as integral markers that can aid patient selection and direct response-adapted treatment strategies. Examples of recently completed multicenter trials using imaging biomarkers are highlighted.
Collapse
|
52
|
Li D, Chen Y, Wang X, Deuther-Conrad W, Chen X, Jia B, Dong C, Steinbach J, Brust P, Liu B, Jia H. 99mTc-Cyclopentadienyl Tricarbonyl Chelate-Labeled Compounds as Selective Sigma-2 Receptor Ligands for Tumor Imaging. J Med Chem 2016; 59:934-46. [DOI: 10.1021/acs.jmedchem.5b01378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Li
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Chen
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xia Wang
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Winnie Deuther-Conrad
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Xin Chen
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bing Jia
- Medical
and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Chengyan Dong
- Interdisciplinary
Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jörg Steinbach
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Peter Brust
- Institute
of Radiopharmaceutical Cancer Research/Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Boli Liu
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongmei Jia
- Key
Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
53
|
Makvandi M, Lieberman BP, LeGeyt B, Hou C, Mankoff DA, Mach RH, Pryma DA. The pre-clinical characterization of an alpha-emitting sigma-2 receptor targeted radiotherapeutic. Nucl Med Biol 2015; 43:35-41. [PMID: 26702785 DOI: 10.1016/j.nucmedbio.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE The sigma-2 receptor is a protein with a Heme binding region and is capable of receptor-mediated endocytosis. It is overexpressed in many cancers making it a potential vector for therapeutic drug delivery. Our objective was to introduce an alpha-emitting radionuclide, astatine-211, into a selective sigma-2 ligand moiety to provide cytotoxic capabilities without adversely altering the pharmacological characteristics. In this study we investigated the in vitro/in vivo tumor targeting and estimated dosimetry of alpha-emitting sigma-2 ligand, 5-(astato-(211)At)-N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2,3-dimethoxybenzamide ((211)At-MM3), in a pre-clinical human breast cancer model. METHODS Astatine-211 was produced in a cyclotron and isolated by dry distillation. Radiosynthesis of (211)At-MM3 was performed using a tin precursor through radioastatodestannylation. In vitro sigma-2 binding experiments using (211)At-MM3 were carried out in live EMT6 and MDA-MB-231 breast cancer cells and liver homogenate tissue. In vivo biodistribution experiments were performed using EMT6 mouse breast cancer cells in BALB/c female mice. Approximately 370 kBq of (211)At-MM3 was administered intravenously and at time points of 5 min, 1, 2, 4, 8, and 24 h organs/tissue were harvested. Estimated human dosimetry was extrapolated from biodistribution data using OLINDA/EXM (VU e-Innovations). RESULTS Astatine-211 was successfully produced and isolated in quantities suitable for in vitro and small animal in vivo experiments. Radiosynthesis of (211)At-MM3 was reproducible with high radiochemical purity. Astatine-211-MM3 exhibited picomolar affinity to the sigma-2 receptor in contrast to the iodinated analog that had nanomolar affinity. Prolonged tumor targeting was measured through biodistribution studies with a maximal tumor to muscle ratio of 9.02 at 4h. Estimated human dosimetry revealed doses of up to 370 MBq in an adult female patient were below organ radiation limits with the potential to provide a high therapeutic dose to tumors. CONCLUSION The sigma-2 receptor could serve as a suitable targeting platform for designing radiotherapeutics. (211)At-MM3 showed tumor targeting properties in vitro/in vivo and favorable estimated human dosimetry establishing the proof of concept for future development as a radiotherapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mehran Makvandi
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104.
| | - Brian P Lieberman
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Ben LeGeyt
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Catherine Hou
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
| | - David A Mankoff
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Robert H Mach
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Daniel A Pryma
- Radiological Chemistry and Biology Laboratories, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104.
| |
Collapse
|
54
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
55
|
Zeng C, Garg N, Mach RH. The PGRMC1 Protein Level Correlates with the Binding Activity of a Sigma-2 Fluorescent Probe (SW120) in Rat Brain Cells. Mol Imaging Biol 2015; 18:172-9. [DOI: 10.1007/s11307-015-0891-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
56
|
Xie F, Bergmann R, Kniess T, Deuther-Conrad W, Mamat C, Neuber C, Liu B, Steinbach J, Brust P, Pietzsch J, Jia H. (18)F-Labeled 1,4-Dioxa-8-azaspiro[4.5]decane Derivative: Synthesis and Biological Evaluation of a σ1 Receptor Radioligand with Low Lipophilicity as Potent Tumor Imaging Agent. J Med Chem 2015; 58:5395-407. [PMID: 26090686 DOI: 10.1021/acs.jmedchem.5b00593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the syntheses and evaluation of series of novel piperidine compounds with low lipophilicity as σ1 receptor ligands. 8-(4-(2-Fluoroethoxy)benzyl)-1,4-dioxa-8-azaspiro[4.5]decane (5a) possessed high affinity (K(i) = 5.4 ± 0.4 nM) for σ1 receptors and selectivity for σ2 receptors (30-fold) and the vesicular acetylcholine transporter (1404-fold). [(18)F]5a was prepared using a one-pot, two-step labeling procedure in an automated synthesis module, with a radiochemical purity of >95%, and a specific activity of 25-45 GBq/μmol. Cellular association, biodistribution, and autoradiography with blocking experiments indicated specific binding of [(18)F]5a to σ1 receptors in vitro and in vivo. Small animal positron emission tomography (PET) imaging using mouse tumor xenograft models demonstrated a high accumulation in human carcinoma and melanoma. Treatment with haloperidol significantly reduced the accumulation of the radiotracer in tumors. These findings suggest that radiotracer with suitable lipophilicity and appropriate affinity for σ1 receptors could be used for tumor imaging.
Collapse
Affiliation(s)
- Fang Xie
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany.,‡Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ralf Bergmann
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany
| | - Torsten Kniess
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany
| | - Winnie Deuther-Conrad
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany
| | - Constantin Mamat
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany.,§Technische Universität Dresden, Department of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Christin Neuber
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany
| | - Boli Liu
- ‡Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jörg Steinbach
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany.,§Technische Universität Dresden, Department of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Peter Brust
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany
| | - Jens Pietzsch
- †Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, POB 510119, D-01314 Dresden, Germany.,§Technische Universität Dresden, Department of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Hongmei Jia
- ‡Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
57
|
Rafat M, Ali R, Graves EE. Imaging radiation response in tumor and normal tissue. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:317-332. [PMID: 26269771 PMCID: PMC4529587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Although X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are the primary imaging modalities used in the clinic to monitor tumor response to radiation therapy, multi-modal molecular imaging may facilitate improved early and specific evaluation of this process. Fast and accurate imaging that can provide both quantitative and biological information is necessary to monitor treatment and ultimately to develop individualized treatment options for patients. A combination of molecular and anatomic information will allow for deeper insight into the mechanisms of tumor response, which will lead to more effective radiation treatments as well as improved anti-cancer drugs. Much progress has been made in nuclear medicine imaging probes and MRI techniques to achieve increased accuracy and the evaluation of relevant biomarkers of radiation response. This review will emphasize promising molecular imaging techniques that monitor various biological processes following radiotherapy, including metabolism, hypoxia, cell proliferation, and angiogenesis.
Collapse
Affiliation(s)
- Marjan Rafat
- Department of Radiation Oncology, Stanford University Stanford, CA 94305, USA
| | - Rehan Ali
- Department of Radiation Oncology, Stanford University Stanford, CA 94305, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University Stanford, CA 94305, USA
| |
Collapse
|
58
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
59
|
Schwarz SW, Oyama R. The role of exploratory investigational new drugs for translating radiopharmaceuticals into first-in-human studies. J Nucl Med 2015; 56:497-500. [PMID: 25766895 DOI: 10.2967/jnumed.114.146472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022] Open
Abstract
The Food and Drug Administration has provided a mechanism to reduce time and resources expended on new pharmaceuticals, including radiopharmaceuticals, in order to identify the most promising agents for further development. The exploratory investigational new drug guidance describes early phase 1 exploratory approaches involving microdoses of potential drug candidates that are consistent with regulatory requirements while maintaining the safety needed for human subjects, allowing sponsors to move ahead more quickly with the development of new agents.
Collapse
Affiliation(s)
- Sally W Schwarz
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Reiko Oyama
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
60
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
61
|
Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer 2014; 120:3433-45. [PMID: 24947987 DOI: 10.1002/cncr.28860] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Positron emission tomography (PET) is a radiotracer imaging method that yields quantitative images of regional in vivo biology and biochemistry. PET, now used in conjunction with computed tomography (CT) in PET/CT devices, has had its greatest impact to date on cancer and is now an important part of oncologic clinical practice and translational cancer research. In this review of current applications and future directions for PET/CT in cancer, the authors first highlight the basic principles of PET followed by a discussion of the biochemistry and current clinical applications of the most commonly used PET imaging agent, (18) F-fluorodeoxyglucose (FDG). Then, emerging methods for PET imaging of other biologic processes relevant to cancer are reviewed, including cellular proliferation, tumor hypoxia, apoptosis, amino acid and cell membrane metabolism, and imaging of tumor receptors and other tumor-specific gene products. The focus of the review is on methods in current clinical practice as well as those that have been translated to patients and are currently in clinical trials.
Collapse
Affiliation(s)
- Michael D Farwell
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
62
|
Bai S, Li S, Xu J, Peng X, Sai K, Chu W, Tu Z, Zeng C, Mach RH. Synthesis and structure-activity relationship studies of conformationally flexible tetrahydroisoquinolinyl triazole carboxamide and triazole substituted benzamide analogues as σ2 receptor ligands. J Med Chem 2014; 57:4239-51. [PMID: 24821398 PMCID: PMC6818095 DOI: 10.1021/jm5001453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel classes of compounds targeting the sigma-2 (σ2) receptor were synthesized, and their bioactivities to binding σ1 and σ2 receptors were measured. Four novel triazole carboxamide analogues, 24d, 24e, 24f, and 39c, demonstrated high affinity and selectivity for the σ2 receptor. These data suggest (11)C-labeled versions of these compounds may be potential σ2-selective radiotracers for imaging the proliferative status of solid tumors.
Collapse
Affiliation(s)
- Suping Bai
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shihong Li
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xin Peng
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kiran Sai
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Wenhua Chu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chenbo Zeng
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
63
|
Hashim YM, Spitzer D, Vangveravong S, Hornick MC, Garg G, Hornick JR, Goedegebuure P, Mach RH, Hawkins WG. Targeted pancreatic cancer therapy with the small molecule drug conjugate SW IV-134. Mol Oncol 2014; 8:956-67. [PMID: 24731702 DOI: 10.1016/j.molonc.2014.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 01/10/2023] Open
Abstract
Pancreatic adenocarcinoma is highly resistant to conventional therapeutics and has been shown to evade apoptosis by deregulation of the X-linked and cellular inhibitors of apoptosis proteins (XIAP and cIAP). Second mitochondria-derived activator of caspases (Smac) induces and amplifies cell death by reversing the anti-apoptotic activity of IAPs. Thus, Smac-derived peptide analogues (peptidomimetics) have been developed and shown to represent promising cancer therapeutics. Sigma-2 receptors are overexpressed in many proliferating tumor cells including pancreatic cancer. Selected ligands to this receptor are rapidly internalized by cancer cells. These characteristics have made the sigma-2 receptor an attractive target for drug delivery because selective delivery to cancer cells has the potential to increase therapeutic efficacy while minimizing toxicity to normal tissues. Here, we describe the initial characterization of SW IV-134, a chemically linked drug conjugate between the sigma-2 ligand SW43 and the Smac mimetic SW IV-52 as a novel treatment option for pancreatic adenocarcinoma. The tumor killing characteristics of our dual-domain therapeutic SW IV-134 was far greater than either component in isolation or in an equimolar mix and suggests enhanced cellular delivery when chemically linked to the sigma-2 ligand. One of the key findings was that SW IV-134 retained target selectivity of the Smac cargo with the involvement of the NF-κB/TNFα signaling pathway. Importantly, SW IV-134 slowed tumor growth and improved survival in murine models of pancreatic cancer. Our data support further study of this novel therapeutic and this drug delivery strategy because it may eventually benefit patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yassar M Hashim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Suwanna Vangveravong
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Mary C Hornick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Gunjal Garg
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - John R Hornick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert H Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
64
|
Garg G, Vangveravong S, Zeng C, Collins L, Hornick M, Hashim Y, Piwnica-Worms D, Powell MA, Mutch DG, Mach RH, Hawkins WG, Spitzer D. Conjugation to a SMAC mimetic potentiates sigma-2 ligand induced tumor cell death in ovarian cancer. Mol Cancer 2014; 13:50. [PMID: 24602489 PMCID: PMC4015918 DOI: 10.1186/1476-4598-13-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/23/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug resistance is a significant problem in the treatment of ovarian cancer and can be caused by multiple mechanisms. Inhibition of apoptosis by the inhibitor of apoptosis proteins (IAPs) represents one such mechanism, and can be overcome by a mitochondrial protein called second mitochondria-derived activator of caspases (SMAC). We have previously shown that the ligands of sigma-2 receptors effectively induce tumor cell death. Additionally, because sigma-2 receptors are preferentially expressed in tumor cells, their ligands provide an effective mechanism for selective anti-cancer therapy. METHODS In the current work, we have improved upon the previously described sigma-2 ligand SW43 by conjugating it to a pro-apoptotic small molecule SMAC mimetic SW IV-52, thus generating the novel cancer therapeutic SW IV-134. The new cancer drug was tested for receptor selectivity and tumor cell killing activity in vitro and in vivo. RESULTS We have shown that SW IV-134 retained adequate sigma-2 receptor binding affinity in the context of the conjugate and potently induced cell death in ovarian cancer cells. The cell death induced by SW IV-134 was significantly greater than that observed with either SW43 or SW IV-52 alone and in combination. Furthermore, the intraperitoneal administration of SW IV-134 significantly reduced tumor burden and improved overall survival in a mouse xenograft model of ovarian cancer without causing significant adverse effects to normal tissues. Mechanistically, SW IV-134 induced degradation of cIAP-1 and cIAP-2 leading to NF-қB activation and TNFα-dependent cell death. CONCLUSIONS Our findings suggest that coupling sigma-2 ligands to SMAC peptidomimetics enhances their effectiveness while maintaining the cancer selectivity. This encouraging proof-of-principle preclinical study supports further development of tumor-targeted small peptide mimetics via ligands to the sigma-2 receptor for future clinical applications.
Collapse
Affiliation(s)
- Gunjal Garg
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suwanna Vangveravong
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chenbo Zeng
- Department of Radiology, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
| | - Lynne Collins
- Departments of Cell Biology & Physiology, Developmental Biology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, St. Louis, MO 63110, USA
| | - Mary Hornick
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
| | - Yassar Hashim
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
| | - David Piwnica-Worms
- Departments of Cell Biology & Physiology, Developmental Biology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, St. Louis, MO 63110, USA
- The University of Texas M.D. Anderson Cancer Center, Cancer Systems Imaging Department, Division of Diagnostic Imaging, T. Boone Pickens Academic Tower, 1400 Pressler Street, Unit 1479, Houston, TX 77030, USA
| | - Matthew A Powell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G Mutch
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
- Britton Chance Professor of Radiology, Director of Radiochemistry, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
65
|
Sigma-2 receptor ligand as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer. Br J Cancer 2013; 109:2368-77. [PMID: 24104966 PMCID: PMC3817331 DOI: 10.1038/bjc.2013.593] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023] Open
Abstract
Background: The sigma-2 receptor has been validated as a biomarker for proliferating tumours. Second mitochondria-derived activator of caspase (Smac) is a protein released from mitochondria into the cytosol, leading to apoptosis. In this study, we investigated a sigma-2 ligand as a tumour-targeting drug delivery agent for treating ovarian cancer. Methods: A sigma-2 ligand, SW 43, was conjugated with a Smac mimetic compound (SMC), SW IV-52s, to form SW III-123. The delivery function of the sigma-2 moiety and cell killing mechanisms of SW III-123 were examined in human ovarian cancer cell lines. Results: SW III-123 internalisation into ovarian cancer cells was mediated by sigma-2 receptors. SW III-123, but not SW IV-52s or SW 43, exhibited potent cytotoxicity in human ovarian cancer cell lines SKOV-3, CaOV-3 and BG-1 after 24-h treatment, suggesting that the sigma-2 ligand successfully delivered SMC into ovarian cancer cells. SW III-123 induced rapid degradation of inhibitor of apoptosis proteins (cIAP1 and cIAP2), accumulation of NF-κB-inducing kinase (NIK) and phosphorylation of NF-κB p65, suggesting that SW III-123 activated both canonical and noncanonical NF-κB pathways in SKOV-3 cells. SW III-123 cleaved caspase-8, -9 and -3. Tumour necrosis factor alpha (TNFα) antibody markedly blocked SW III-123-induced cell death and caspase-3 activity in SKOV-3 cells, indicating that SW III-123 activated both intrinsic and extrinsic apoptotic pathways and induced TNFα-dependent cell death in SKOV-3 cells. Conclusion: Sigma-2 ligands are a promising tumour-targeting drug delivery agent. Sigma-2-conjugated SMC exemplifies a novel class of therapeutic drugs for treating ovarian cancer.
Collapse
|
66
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 PMCID: PMC3799232 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
67
|
Shoghi KI, Xu J, Su Y, He J, Rowland D, Yan Y, Garbow JR, Tu Z, Jones LA, Higashikubo R, Wheeler KT, Lubet RA, Mach RH, You M. Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [(18)F]ISO-1. PLoS One 2013; 8:e74188. [PMID: 24073202 PMCID: PMC3779213 DOI: 10.1371/journal.pone.0074188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
The sigma-2 receptor is expressed in higher density in proliferating (P) tumor cells versus quiescent (Q) tumor cells, thus providing an attractive target for imaging the proliferative status (i.e., P:Q ratio) of solid tumors. Here we evaluate the utility of the sigma-2 receptor ligand 2-(2-[(18)F]fluoroethoxy)-N-(4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl)-5-methyl-benzamide, [(18)F]ISO-1, in two different rodent models of breast cancer. In the first study, small animal Positron Emission Tomography (PET) imaging studies were conducted with [(18)F]ISO-1 and (18)FDG in xenografts of mouse mammary tumor 66 and tracer uptake was correlated with the in vivo P:Q ratio determined by flow cytometric measures of BrdU-labeled tumor cells. The second model utilized a chemically-induced (N-methyl-N-nitrosourea [MNU]) model of rat mammary carcinoma to correlate measures of [(18)F]ISO-1 and FDG uptake with MR-based volumetric measures of tumor growth. In addition, [(18)F]ISO-1 and FDG were used to assess the response of MNU-induced tumors to bexarotene and Vorozole therapy. In the mouse mammary 66 tumors, a strong linear correlation was observed between the [(18)F]ISO-1 tumor: background ratio and the proliferative status (P:Q ratio) of the tumor (R = 0.87). Similarly, measures of [(18)F]ISO-1 uptake in MNU-induced tumors significantly correlated (R = 0.68, P<0.003) with changes in tumor volume between consecutive MR imaging sessions. Our data suggest that PET studies of [(18)F]ISO-1 provide a measure of both the proliferative status and tumor growth rate, which would be valuable in designing an appropriate treatment strategy.
Collapse
Affiliation(s)
- Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yi Su
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - June He
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, California, United States of America
| | - Ying Yan
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynne A. Jones
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ryuji Higashikubo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth T. Wheeler
- Department of Radiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina, United States of America
| | - Ronald A. Lubet
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ming You
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
68
|
Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 2013; 34:532-66. [PMID: 23922215 DOI: 10.1002/med.21297] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sigma-2 receptor is highly expressed in various rapidly proliferating cancer cells and regarded as a cancer cell biomarker. Selective sigma-2 ligands have been shown to specifically label the tumor sites, induce cancer cells to undergo apoptosis, and inhibit tumor growth. Sigma-2 ligands are potentially useful as cancer diagnostics, anticancer therapeutics, or adjuvant anticancer treatment agents. However, both the cloning of this receptor and the identification of its endogenous ligand have not been successful, and the lack of structural information has severely hindered the understanding of its physiological roles, its signaling pathways, and the development of more selective sigma-2 ligands. Recent data have implicated that sigma-2 binding sites are within the lipid rafts and that PGRMC1 (progesterone receptor membrane component 1) complex and sigma-2 receptor may be coupled with EGFR (epidermal growth factor receptor), mTOR (mammalian target of rapamycin), caspases, and ion channels. Due to its promising applications in cancer management, there are rapidly increasing research efforts that are being directed into this field. This review article updates the current understanding of sigma-2 receptor and its potential physiological roles, applications, interaction with other effectors, with special focuses on the development of sigma-2 ligands, their chemical structures, pharmacological profiles, applications in imaging and anticancer therapy.
Collapse
Affiliation(s)
- Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical College, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong, 523808, China
| | | | | | | |
Collapse
|
69
|
Mach RH, Zeng C, Hawkins WG. The σ2 receptor: a novel protein for the imaging and treatment of cancer. J Med Chem 2013; 56:7137-60. [PMID: 23734634 DOI: 10.1021/jm301545c] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The σ2 receptor is an important target for the development of molecular probes in oncology because of its 10-fold higher density in proliferating tumor cells compared with that in quiescent tumor cells and because of the observation that σ2 receptor agonists are able to kill tumor cells via apoptotic and nonapoptotic mechanisms. Although recent evidence indicates that the σ2 receptor binding site is localized within the progesterone receptor membrane component 1 (PGRMC1), most information regarding this protein has been obtained using either radiolabeled or fluorescent receptor-based probes and from biochemical analysis of the effect of σ2 selective ligands on cells grown in culture. This article reviews the development of σ2 receptor ligands and presents an overview of how they have been used in vitro and in vivo to increase our understanding of the role of the σ2 receptor in cancer and proliferation.
Collapse
Affiliation(s)
- Robert H Mach
- Mallinckrodt Institute of Radiology and ‡Department of Surgery, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | |
Collapse
|