51
|
Wilson TC, Xavier MA, Knight J, Verhoog S, Torres JB, Mosley M, Hopkins SL, Wallington S, Allen PD, Kersemans V, Hueting R, Smart S, Gouverneur V, Cornelissen B. PET Imaging of PARP Expression Using 18F-Olaparib. J Nucl Med 2019; 60:504-510. [PMID: 30389822 PMCID: PMC6448459 DOI: 10.2967/jnumed.118.213223] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.
Collapse
Affiliation(s)
- Thomas C. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Mary-Ann Xavier
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stefan Verhoog
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Julia Baguña Torres
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L. Hopkins
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sheena Wallington
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Phillip D. Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rebekka Hueting
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
52
|
Gonzales J, Kossatz S, Roberts S, Pirovano G, Brand C, Pérez-Medina C, Donabedian P, de la Cruz MJ, Mulder WJM, Reiner T. Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjug Chem 2018; 29:3776-3782. [PMID: 30354077 DOI: 10.1021/acs.bioconjchem.8b00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The preclinical potential of many diagnostic and therapeutic small molecules is limited by their rapid washout kinetics and consequently modest pharmacological performances. In several cases, these could be improved by loading the small molecules into nanoparticulates, improving blood half-life, in vivo uptake and overall pharmacodynamics. In this study, we report a nanoemulsion (NE) encapsulated form of PARPi-FL. As a proof of concept, we used PARPi-FL, which is a fluorescently labeled sensor for olaparib, a FDA-approved small molecule inhibitor of the nuclear enzyme poly(ADP-ribose)polymerase 1 (PARP1). Encapsulated PARPi-FL showed increased blood half-life, and delineated subcutaneous xenografts of small cell lung cancer (SCLC), a fast-progressing disease where efficient treatment options remain an unmet clinical need. Our study demonstrates an effective method for expanding the circulation time of a fluorescent PARP inhibitor, highlighting the pharmacokinetic benefits of nanoemulsions as nanocarriers and confirming the value of PARPi-FL as an imaging agent targeting PARP1 in small cell lung cancer.
Collapse
Affiliation(s)
- Junior Gonzales
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Susanne Kossatz
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Giacomo Pirovano
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|