51
|
Xu JT, Liu CS, Wang M, Nie KL, Deng L, Shao L, Wang F. An Effective Biocatalytic Reactor–Rotating Packed Bed Applied in Hydrolysis Reactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Tao Xu
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Chang-Sheng Liu
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Meng Wang
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Kai-Li Nie
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Li Deng
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Lei Shao
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Fang Wang
- Beijing
Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| |
Collapse
|
52
|
Sonochemical Effect on Activity and Conformation of Commercial Lipases. Appl Biochem Biotechnol 2016; 181:1435-1453. [DOI: 10.1007/s12010-016-2294-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
53
|
Qiao H, Zhang F, Guan W, Zuo J, Feng D. Optimisation of combi-lipases from Aspergillus niger
for the synergistic and efficient hydrolysis of soybean oil. Anim Sci J 2016; 88:772-780. [DOI: 10.1111/asj.12718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Hanzhen Qiao
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Fei Zhang
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Wutai Guan
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Jianjun Zuo
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
| | - Dingyuan Feng
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
| |
Collapse
|
54
|
Han JE, Seo MJ, Shin KC, Oh DK. Production of 10R-hydroxy unsaturated fatty acids from hempseed oil hydrolyzate by recombinant Escherichia coli cells expressing PpoC from Aspergillus nidulans. Appl Microbiol Biotechnol 2016; 100:7933-44. [PMID: 27129531 DOI: 10.1007/s00253-016-7508-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
Abstract
The first and second preferred substrates of recombinant Escherichia coli cells expressing 10R-dioxygenase (PpoC) from Aspergillus nidulans and the purified enzyme were linoleic acid and α-linolenic acid, respectively. PpoC in cells showed higher thermal and reaction stabilities compared to purified PpoC. Thus, 10R-hydroxy unsaturated fatty acids were produced from linoleic acid, α-linolenic acid, and hempseed oil hydrolyzate containing linoleic acid and α-linolenic acid as substrates by whole recombinant cells expressing PpoC. The optimal reaction conditions for the production of 10R-hydroxy-8E,12Z-octadecadienoic acid (10R-HODE) were pH 8.0, 30 °C, 250 rpm, 5 % (v/v) dimethyl sulfoxide, 5 g l(-1) linoleic acid, and 60 g l(-1) cells in 100-ml baffled flask. Under these conditions, whole recombinant cells expressing PpoC produced 2.7 g l(-1) 10R-HODE from 5 g l(-1) linoleic acid for 40 min, with a conversion yield of 54 % (w/w) and a productivity of 4.0 g l(-1) h(-1); produced 2.2 g l(-1) 10R-hydroxy-8E,12Z,15Z-octadecatrienoic acid (10R-HOTrE) from 3 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 72 % (w/w) and a productivity of 4.3 g l(-1) h(-1); and produced 1.8 g l(-1) 10R-HODE and 0.5 g l(-1) 10R-HOTrE from 5 g l(-1) hempseed oil hydrolyzate containing 2.5 g l(-1) linoleic acid and 1.0 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 74 and 51 % (w/w), respectively, and a productivity of 3.6 and 1.0 g l(-1) h(-1), respectively. To the best of our knowledge, this is the first report on the biotechnological production of 10R-hydroxy unsaturated fatty acids.
Collapse
Affiliation(s)
- Jeong-Eun Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
55
|
Spectroscopy and kinetics evidence for the hydrogen-bond activating effect of anion/cation of [Bmim]OAc on the hydrolysis of esters. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
56
|
Aarthy M, Saravanan P, Ayyadurai N, Gowthaman MK, Kamini NR. A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K. Genome mining of fungal lipid-degrading enzymes for industrial applications. MICROBIOLOGY-SGM 2016; 161:1613-1626. [PMID: 26271808 DOI: 10.1099/mic.0.000127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipases are interesting enzymes, which contribute important roles in maintaining lipid homeostasis and cellular metabolisms. Using available genome data, seven lipase families of oleaginous and non-oleaginous yeast and fungi were categorized based on the similarity of their amino acid sequences and conserved structural domains. Of them, triacylglycerol lipase (patatin-domain-containing protein) and steryl ester hydrolase (abhydro_lipase-domain-containing protein) families were ubiquitous enzymes found in all species studied. The two essential lipases rendered signature characteristics of integral membrane proteins that might be targeted to lipid monolayer particles. At least one of the extracellular lipase families existed in each species of yeast and fungi. We found that the diversity of lipase families and the number of genes in individual families of oleaginous strains were greater than those identified in non-oleaginous species, which might play a role in nutrient acquisition from surrounding hydrophobic substrates and attribute to their obese phenotype. The gene/enzyme catalogue and relevant informative data of the lipases provided by this study are not only valuable toolboxes for investigation of the biological role of these lipases, but also convey potential in various industrial applications.
Collapse
Affiliation(s)
- Tayvich Vorapreeda
- Biochemical Engineering and Pilot Plant Research and Development Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) at King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Pilot Plant Research and Development Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) at King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand
| | - Supapon Cheevadhanarak
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand.,Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand
| | - Kobkul Laoteng
- Bioprocess Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| |
Collapse
|
58
|
Manoel EA, Robert JM, Pinto MCC, Machado ACO, Besteti MD, Coelho MAZ, Simas ABC, Fernandez-Lafuente R, Pinto JC, Freire DMG. Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Adv 2016. [DOI: 10.1039/c5ra22508f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper shows the production of lipase B fromCandida antarctica(LIPB) after cloning the gene that encoded it inPichia pastorisusing PGK as a constitutive promoter. The lipase was immobilized on different home-made supports for distinct reactions.
Collapse
Affiliation(s)
- Evelin A. Manoel
- Laboratório Integrado de Pesquisas em Biotecnologia
- Departamento de Biotecnologia Farmacêutica
- Faculdade de Farmácia
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Julia M. Robert
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Martina C. C. Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Antonio C. O. Machado
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Marina D. Besteti
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Maria Alice Z. Coelho
- Biological System Engineering Group Laboratory
- Departamento de Engenharia Bioquímica
- Escola de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Alessandro B. C. Simas
- Laboratório Roderick Barnes
- Instituto de Pesquisas e Produtos Naturais
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | - Jose Carlos Pinto
- Laboratório de Engenharia de Polímeros/EngePol
- Programa de Engenharia Química
- COPPE
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Denise M. G. Freire
- Laboratório de Biotecnologia Microbiana
- Departamento de Bioquímica
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| |
Collapse
|
59
|
Chaves S, Pera LM, Avila CL, Romero CM, Baigori M, Morán Vieyra FE, Borsarelli CD, Chehin RN. Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils. RSC Adv 2016. [DOI: 10.1039/c5ra19590j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Photoimmobilization of enzymes on an amyloid-like fibrillar scaffold.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Licia M. Pera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Cesar Luis Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Cintia M. Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Mario Baigori
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - F. Eduardo Morán Vieyra
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Rosana N. Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| |
Collapse
|
60
|
Prasanna Rani KN, Neeharika TS, Lokesh P, Prathap Kumar T, Prasad RB. Kinetics of enzymatic hydrolysis of methyl ricinoleate. GRASAS Y ACEITES 2015. [DOI: 10.3989/gya.1316143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
61
|
dos Santos JC, Rueda N, Torres R, Barbosa O, Gonçalves LR, Fernandez-Lafuente R. Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
62
|
Khaskheli AA, Talpur FN, Ashraf MA, Cebeci A, Jawaid S, Afridi HI. Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
63
|
Chen PC, Huang XJ, Xu ZK. Activation and deformation of immobilized lipase on self-assembled monolayers with tailored wettability. Phys Chem Chem Phys 2015; 17:13457-65. [DOI: 10.1039/c5cp00802f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationships between the activity of immobilized lipase and its adsorption behavior, distribution, and structure were revealed for the first time.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
64
|
Li Z, Chen H, Wang W, Qu M, Tang Q, Yang B, Wang Y. Substrate-constituted three-liquid-phase system: a green, highly efficient and recoverable platform for interfacial enzymatic reactions. Chem Commun (Camb) 2015; 51:12943-6. [DOI: 10.1039/c5cc04457j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using substrate (oil) as one phase, a three-liquid-phase system was fabricated, wherein the highly efficient interfacial enzymatic hydrolysis of oil toward the production of fatty acids could be readily achieved.
Collapse
Affiliation(s)
- Zhigang Li
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Huayong Chen
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Weifei Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Man Qu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Qingyun Tang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Bo Yang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Yonghua Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
65
|
Saravanan P, Dubey VK, Patra S. Emulating structural stability of Pseudomonas mendocina lipase: in silico mutagenesis and molecular dynamics studies. J Mol Model 2014; 20:2501. [DOI: 10.1007/s00894-014-2501-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022]
|
66
|
Synthesis of (S)-ricinoleic acid and its methyl ester with the participation of ionic liquid. Chem Phys Lipids 2014; 183:137-41. [DOI: 10.1016/j.chemphyslip.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
|
67
|
Verma ML, Puri M, Barrow CJ. Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 2014; 36:108-19. [DOI: 10.3109/07388551.2014.928811] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Improving the catalytic performance of porcine pancreatic lipase in the presence of [MMIm][MeSO4] with the modification of functional ionic liquids. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
69
|
Hu Y, Yang J, Jia R, Ding Y, Li S, Huang H. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase. Bioprocess Biosyst Eng 2014; 37:1617-26. [DOI: 10.1007/s00449-014-1134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/16/2014] [Indexed: 01/04/2023]
|
70
|
Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
71
|
Garg T, Rath G, Goyal AK. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv 2014; 22:969-987. [PMID: 24456019 DOI: 10.3109/10717544.2013.879355] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skin is the largest organ of the human body and plays the most important role in protecting against pathogen and foreign matter. Three important modes such as topical, regional and transdermal are widely used for delivery of various dosage forms. Among these modes, the topical dosage forms are preferred because it provides local therapeutic activity when applied to the skin or mucous membranes. Additives or pharmaceutical excipients (non-drug component of dosage form) are used as inactive ingredients in dosage form or tools for structuring dosage forms. The main use of topical dosage form additives are controling the extent of absorption, maintaining the viscosity, improving the stability as well as organoleptic property and increasing the bulk of the formulation. The overall goal of this article is to provide the clinician with information related to the topical dosage form additives and their current major applications against various diseases.
Collapse
Affiliation(s)
- Tarun Garg
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab
| | - Goutam Rath
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab
| | - Amit K Goyal
- a Department of Pharmaceutics , ISF College of Pharmacy , Moga , Punjab
| |
Collapse
|
72
|
Shang W, Zhang X, Yang X, Zhang S. High pressure CO2-controlled reactors: enzymatic chiral resolution in emulsions. RSC Adv 2014. [DOI: 10.1039/c4ra02131b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chiral separation of ibuprofen catalyzed by enzyme conducted in CO2-based micelle makes the reaction more effective and greener.
Collapse
Affiliation(s)
- Wenting Shang
- Department of Chemistry
- Renmin University of China
- Beijing, P.R. China
| | - Xiaogang Zhang
- Department of Chemistry
- Renmin University of China
- Beijing, P.R. China
| | - Xiaoxi Yang
- Department of Chemistry
- Renmin University of China
- Beijing, P.R. China
| | - Shujuan Zhang
- Department of Chemistry
- Renmin University of China
- Beijing, P.R. China
| |
Collapse
|
73
|
Alves JS, Vieira NS, Cunha AS, Silva AM, Záchia Ayub MA, Fernandez-Lafuente R, Rodrigues RC. Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv 2014. [DOI: 10.1039/c3ra45969a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The concept of thecombi-lipasebiocatalyst has been proposed. It is based on the combination of different lipases as biocatalysts in reactions using heterogeneous substrates.
Collapse
Affiliation(s)
- Joana S. Alves
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Nathália S. Vieira
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Alisson S. Cunha
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Alexandre M. Silva
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Marco A. Záchia Ayub
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | | | - Rafael C. Rodrigues
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| |
Collapse
|
74
|
A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Park KM, Kwon CW, Choi SJ, Son YH, Lim S, Yoo Y, Chang PS. Thermal deactivation kinetics of Pseudomonas fluorescens lipase entrapped in AOT/isooctane reverse micelles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9421-9427. [PMID: 23984828 DOI: 10.1021/jf402539m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thermostability of the lipase (EC 3.1.1.3) was found to be increased by the enzyme-entrapment in 50 mM AOT/isooctane reverse micelles. The half-life (15.75 h) of Pseudomonas fluorescens lipase entrapped in reverse micelles at 70 °C was 9.72- and 11.41-fold longer than those solubilized in a glycerol pool or in 10 mM phosphate buffer (pH 8.0), respectively. The enzyme deactivation model considering a two-step series-type was employed, and deactivation constants for the second step (k₂) at all temperatures were drastically decreased after the lipase was entrapped in reverse micelles. In particular, k₂ (0.0354 h⁻¹) at 70 °C in reverse micelles was 12.33- and 13.14-fold lower than in a glycerol pool or in the phosphate buffer, respectively. The deactivation energies (from k₁, k₂) for the lipase entrapped in the reverse micelles, solubilized in a glycerol pool, or in the aqueous buffer were 7.51, 26.35 kcal/mol, 5.93, 21.08 kcal/mol, and 5.53, 17.57 kcal/mol, respectively.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Agricultural Biotechnology, Seoul National University , Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
76
|
Biochemical diversity of carboxyl esterases and lipases from Lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 2013; 79:3553-62. [PMID: 23542620 DOI: 10.1128/aem.00240-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The esterases and lipases from the α/β hydrolase superfamily exhibit an enormous sequence diversity, fold plasticity, and activities. Here, we present the comprehensive sequence and biochemical analyses of seven distinct esterases and lipases from the metagenome of Lake Arreo, an evaporite karstic lake in Spain (42°46'N, 2°59'W; altitude, 655 m). Together with oligonucleotide usage patterns and BLASTP analysis, our study of esterases/lipases mined from Lake Arreo suggests that its sediment contains moderately halophilic and cold-adapted proteobacteria containing DNA fragments of distantly related plasmids or chromosomal genomic islands of plasmid and phage origins. This metagenome encodes esterases/lipases with broad substrate profiles (tested over a set of 101 structurally diverse esters) and habitat-specific characteristics, as they exhibit maximal activity at alkaline pH (8.0 to 8.5) and temperature of 16 to 40°C, and they are stimulated (1.5 to 2.2 times) by chloride ions (0.1 to 1.2 M), reflecting an adaptation to environmental conditions. Our work provides further insights into the potential significance of the Lake Arreo esterases/lipases for biotechnology processes (i.e., production of enantiomers and sugar esters), because these enzymes are salt tolerant and are active at low temperatures and against a broad range of substrates. As an example, the ability of a single protein to hydrolyze triacylglycerols, (non)halogenated alkyl and aryl esters, cinnamoyl and carbohydrate esters, lactones, and chiral epoxides to a similar extent was demonstrated.
Collapse
|
77
|
Jia R, Hu Y, Liu L, Jiang L, Huang H. Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids. Org Biomol Chem 2013; 11:7192-8. [DOI: 10.1039/c3ob41076e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|