51
|
Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag 2019; 9:5-23. [DOI: 10.2217/nmt-2018-0033] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hereditary transthyretin-mediated amyloidosis is a rapidly progressive, heterogeneous disease caused by the accumulation of misfolded transthyretin protein as amyloid fibrils at multiple sites, and is characterized by peripheral sensorimotor neuropathy, autonomic neuropathy and/or cardiomyopathy. Current treatment options have limited efficacy and often do not prevent disease progression. Patisiran is a novel RNA interference therapeutic that specifically reduces production of both wild-type and mutant transthyretin protein. In Phase II, III and long-term extension studies in patients with hereditary transthyretin-mediated amyloidosis, patisiran has consistently slowed or improved progression of neuropathy. In addition, the Phase III trial demonstrated significant improvements in quality of life measures and indicators of cardiomyopathy. Here, we highlight efficacy and safety data from the patisiran clinical trial programme.
Collapse
Affiliation(s)
- Arnt V Kristen
- Department of Cardiology, University of Heidelberg, Heidelberg, D-69120, Germany
- Cardiovascular Center Darmstadt, Darmstadt, 64287, Germany
| | - Senda Ajroud-Driss
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Isabel Conceição
- Centro Hospitalar Lisboa Norte, Hospital de Santa Maria, Universidade de Lisboa, Faculdade de Medicina, 1649-028, Portugal
| | - Peter Gorevic
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029, USA
| | | | - Laura Obici
- Amyloidosis Research & Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| |
Collapse
|
52
|
Congo Red and amyloids: history and relationship. Biosci Rep 2019; 39:BSR20181415. [PMID: 30567726 PMCID: PMC6331669 DOI: 10.1042/bsr20181415] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Staining with Congo Red (CR) is a qualitative method used for the identification of amyloids in vitro and in tissue sections. However, the drawbacks and artefacts obtained when using this dye can be found both in vitro and in vivo. Analysis of scientific data from previous studies shows that CR staining alone is not sufficient for confirmation of the amyloid nature of protein aggregates in vitro or for diagnosis of amyloidosis in tissue sections. In the present paper, we describe the characteristics and limitations of other methods used for amyloid studies. Our historical review on the use of CR staining for amyloid studies may provide insight into the pitfalls and caveats related to this technique for researchers considering using this dye.
Collapse
|
53
|
Kopishinskaya SV. [Transthyretin familial amyloid polyneuropathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:82-89. [PMID: 30499502 DOI: 10.17116/jnevro201811810182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transthyretin family amyloid polyneuropathy (TTR-FAP) is a progressive, ultimately fatal disease. It manifests itself primarily with sensory, motor and autonomic polyneuropathy and/or cardiomyopathy and is caused by extracellular deposition of insoluble amyloid fibrils in the endoneurium. The cause of TTR-FAP is the mutation in the gene encoding transthyretin, more than 100 types of mutations are known. Given the phenotypic diversity of TTR-FAP, it is difficult for clinicians to make this diagnosis. An erroneous diagnosis is a frequent occurrence, risking the onset of an organ pathology. The paper addresses the issues of the pathogenesis, diagnosis and treatment of TTR-FAP.
Collapse
Affiliation(s)
- S V Kopishinskaya
- Federal State Budget Educational Establishment of Higher Education Nizhny Novgorod State Medical Academy of the Ministry of Public Health of the Russian Federation, Nizhny Novgorod, Russia
| |
Collapse
|
54
|
Peng X, Cashman NR, Plotkin SS. Prediction of Misfolding-Specific Epitopes in SOD1 Using Collective Coordinates. J Phys Chem B 2018; 122:11662-11676. [PMID: 30351123 DOI: 10.1021/acs.jpcb.8b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a global, collective coordinate bias into molecular dynamics simulations that partially unfolds a protein, in order to predict misfolding-specific epitopes based on the regions that locally unfold. Several metrics are used to measure local disorder, including solvent exposed surface area (SASA), native contacts ( Q), and root mean squared fluctuations (RMSF). The method is applied to Cu, Zn superoxide dismutase (SOD1). For this protein, the processes of monomerization, metal loss, and conformational unfolding due to microenvironmental stresses are all separately taken into account. Several misfolding-specific epitopes are predicted, and consensus epitopes are calculated. These predicted epitopes are consistent with the "lower-resolution" peptide sequences used to raise disease-specific antibodies, but the epitopes derived from collective coordinates contain shorter, more refined sequences for the key residues constituting the epitope.
Collapse
Affiliation(s)
- Xubiao Peng
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada.,Center for Quantum Technology Research, School of Physics , Beijing Institute of Technology , Haidian, Beijing 100081 , China
| | - Neil R Cashman
- Brain Research Centre , University of British Columbia , Vancouver , British Columbia V6T 2B5 , Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, and Genome Sciences and Technology Program , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
55
|
Saelices L, Chung K, Lee JH, Cohn W, Whitelegge JP, Benson MD, Eisenberg DS. Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proc Natl Acad Sci U S A 2018; 115:E6741-E6750. [PMID: 29954863 PMCID: PMC6055172 DOI: 10.1073/pnas.1805131115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Each of the 30 human amyloid diseases is associated with the aggregation of a particular precursor protein into amyloid fibrils. In transthyretin amyloidosis (ATTR), mutant or wild-type forms of the serum carrier protein transthyretin (TTR), synthesized and secreted by the liver, convert to amyloid fibrils deposited in the heart and other organs. The current standard of care for hereditary ATTR is liver transplantation, which replaces the mutant TTR gene with the wild-type gene. However, the procedure is often followed by cardiac deposition of wild-type TTR secreted by the new liver. Here we find that amyloid fibrils extracted from autopsied and explanted hearts of ATTR patients robustly seed wild-type TTR into amyloid fibrils in vitro. Cardiac-derived ATTR seeds can accelerate fibril formation of wild-type and monomeric TTR at acidic pH and under physiological conditions, respectively. We show that this seeding is inhibited by peptides designed to complement structures of TTR fibrils. These inhibitors cap fibril growth, suggesting an approach for halting progression of ATTR.
Collapse
Affiliation(s)
- Lorena Saelices
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
- UCLA-DOE, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Kevin Chung
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
- UCLA-DOE, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Ji H Lee
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
- UCLA-DOE, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Whitaker Cohn
- Neuropsychiatric Institute (NPI)-Semel Institute, University of California, Los Angeles, CA 90024
| | - Julian P Whitelegge
- Neuropsychiatric Institute (NPI)-Semel Institute, University of California, Los Angeles, CA 90024
| | - Merrill D Benson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - David S Eisenberg
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095;
- UCLA-DOE, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
56
|
3D myocardial deformation analysis from cine MRI as a marker of amyloid protein burden in cardiac amyloidosis: validation versus T1 mapping. Int J Cardiovasc Imaging 2018; 34:1937-1946. [DOI: 10.1007/s10554-018-1410-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/10/2018] [Indexed: 01/16/2023]
|
57
|
|
58
|
|
59
|
Transthyretin familial amyloid polyneuropathy: an update. J Neurol 2017; 265:976-983. [PMID: 29249054 DOI: 10.1007/s00415-017-8708-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Abstract
Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a progressive, fatal, inherited disorder first identified in Portugal and now recognized in all continents. Over the past decade, thanks to the availability of the genetic test, our knowledge on the range of clinical expressions of this disorder has expanded, including different patterns and progression rates of the neuropathy, as well as aspects of the cardiomyopathy, which can be prominent. In the mean time, new tools are being developed to detect earlier TTR amyloid deposition such as cardiac scintigraphy with technetium-labelled pyrophosphate tracers or small nerve fiber alterations from skin biopsies, or using neurophysiological approaches as well as magnetic resonance neurography (MRN). Such refinements, along with an increased awareness of the disease, should reduce the diagnostic delay and facilitate early treatment. In this regard, thanks to a better understanding of the TTR amyloid formation, major advances have been made, allowing for therapeutic developments which are less invasive than liver transplantation (LT). TTR stabilizer drugs are safe and seem to delay the disease progression in some groups of patients. Indeed, positive results have just been released from 2 phase III trials on TTR gene modifiers, namely silencing RNA and antisense oligonucleotide therapies. These recent advances open a new area in the field with the hope that we can safely bring about long-term stabilization of the disease. Furthermore, immunotherapies targeting the amyloid deposits are being explored.
Collapse
|
60
|
Nuvolone M, Merlini G. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis. Expert Opin Ther Targets 2017; 21:1095-1110. [PMID: 29076382 DOI: 10.1080/14728222.2017.1398235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.
Collapse
Affiliation(s)
- Mario Nuvolone
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| | - Giampaolo Merlini
- a Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine , University of Pavia , Pavia , Italy
| |
Collapse
|
61
|
González-López E, López-Sainz Á, Garcia-Pavia P. Diagnóstico y tratamiento de la amiloidosis cardiaca por transtiretina. Progreso y esperanza. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2017.05.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
|
63
|
González-López E, López-Sainz Á, Garcia-Pavia P. Diagnosis and Treatment of Transthyretin Cardiac Amyloidosis. Progress and Hope. ACTA ACUST UNITED AC 2017; 70:991-1004. [PMID: 28870641 DOI: 10.1016/j.rec.2017.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022]
Abstract
Cardiac amyloidosis is an infiltrative disorder caused by extracellular protein deposition. Transthyretin is a proamyloidotic protein that produces one of the most frequent forms of cardiac amyloidosis, either through mutations or a wild-type form (previously known as senile amyloidosis). Until very recently, diagnosis of transthyretin amyloidosis (ATTR) was very uncommon and histological confirmation was mandatory, making diagnosis of ATTR a real challenge in daily clinical practice. Moreover, the specific therapeutic options to alter the clinical course of the disease were very limited. However, advances in cardiac imaging and diagnostic strategies have improved recognition of ATTR. In addition, several compounds able to modify the natural history of the disease are in the final phases of research, with promising results. Given that effective therapies are on the horizon, cardiologists should be well-versed in this disease and be familiar with its diagnosis and treatment. This review describes the broad clinical spectrum of ATTR in detail, as well as recent advances in the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Esther González-López
- Unidad de Insuficiencia Cardiaca y Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ángela López-Sainz
- Unidad de Insuficiencia Cardiaca y Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Pablo Garcia-Pavia
- Unidad de Insuficiencia Cardiaca y Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain.
| |
Collapse
|
64
|
Affiliation(s)
- Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
65
|
Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin Sci (Lond) 2017; 131:395-409. [PMID: 28213611 DOI: 10.1042/cs20160413] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) amyloidosis (ATTR amyloidosis) is an underdiagnosed and important type of cardiomyopathy and/or polyneuropathy that requires increased awareness within the medical community. Raising awareness among clinicians about this type of neuropathy and lethal form of heart disease is critical for improving earlier diagnosis and the identification of patients for treatment. The following review summarizes current criteria used to diagnose both hereditary and wild-type ATTR (ATTRwt) amyloidosis, tools available to clinicians to improve diagnostic accuracy, available and newly developing therapeutics, as well as a brief biochemical and biophysical background of TTR amyloidogenesis.
Collapse
|
66
|
Suhr OB, Lundgren E, Westermark P. One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition. J Intern Med 2017; 281:337-347. [PMID: 28093848 DOI: 10.1111/joim.12585] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although hereditary transthyretin (h-ATTR) amyloidosis is a monogenetic disease, a large variation in its phenotype has been observed. The common hypothesis of amyloid fibril formation involves dissociation of the transthyretin (TTR) tetramer into monomers that after misfolding reassemble into amyloid fibrils. This notion is partly challenged by the finding of two distinct types of amyloid fibrils. One of these, type A, consists of C-terminal ATTR fragments and full-length TTR, whereas the other, type B, consists only of full-length TTR. All organs of an individual patient contain ATTR deposits of either type A or type B fibrils, and the composition in each individual remains unchanged over time. The finding of two distinct types of ATTR fibrils suggests that there are at least two different pathways in operation for ATTR fibril formation. For the most common European mutation, TTR Val30Met, ATTR fibril composition is related to the outcome of liver transplantation, which is the first successful treatment for the disease, and the penetrance of the trait. In addition, the presence of C-terminal ATTR fragments has an impact on the affinity for various tracers used for noninvasive imaging of amyloid depositions such as 99 m-technetium-diphosphono-propanodicarboxylic acid scintigraphy and positron emission tomography utilizing Pittsburgh component B, and even for the gold standard diagnostic procedure, tissue biopsy stained by Congo red and examined under polarized light. The importance of amyloid fibril composition needs to be taken into consideration when designing clinical trials of treatment modalities, and also in the evaluation of diagnostic methods such as imaging techniques.
Collapse
Affiliation(s)
- O B Suhr
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - E Lundgren
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - P Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
67
|
Sperry BW, Tang WHW. Amyloid heart disease: genetics translated into disease-modifying therapy. Heart 2017; 103:812-817. [DOI: 10.1136/heartjnl-2016-309914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/04/2022] Open
|
68
|
Ando Y, Ueda M. Antibody therapy for transthyretin-related hereditary amyloid polyneuropathy: another therapeutic option. Amyloid 2017; 24:113-114. [PMID: 28434350 DOI: 10.1080/13506129.2017.1293514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yukio Ando
- a Department of Neurology , Graduate School of Medical Sciences, Kumamoto University , Kumamoto , Japan
| | - Mitsuharu Ueda
- a Department of Neurology , Graduate School of Medical Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|
69
|
Abstract
Peptide antibodies, with their high specificities and affinities, are invaluable reagents for peptide and protein recognition in biological specimens. Depending on the application and the assay, in which the peptide antibody is to used, several factors influence successful antibody production, including peptide selection and antibody screening. Peptide antibodies have been used in clinical laboratory diagnostics with great success for decades, primarily because they can be produced to multiple targets, recognizing native wildtype proteins, denatured proteins, and newly generated epitopes. Especially mutation-specific peptide antibodies have become important as diagnostic tools in the detection of various cancers. In addition to their use as diagnostic tools in malignant and premalignant conditions, peptide antibodies are applied in all other areas of clinical laboratory diagnostics, including endocrinology, hematology, neurodegenerative diseases, cardiovascular diseases, infectious diseases, and amyloidoses.
Collapse
|
70
|
Buxbaum JN, Ruberg FL. Transthyretin V122I (pV142I)* cardiac amyloidosis: an age-dependent autosomal dominant cardiomyopathy too common to be overlooked as a cause of significant heart disease in elderly African Americans. Genet Med 2017; 19:733-742. [PMID: 28102864 DOI: 10.1038/gim.2016.200] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 01/21/2023] Open
Abstract
Since the identification of a valine-to-isoleucine substitution at position 122 (TTR V122I; pV142I) in the transthyretin (TTR)-derived fibrils extracted from the heart of a patient with late-onset cardiac amyloidosis, it has become clear that the amyloidogenic mutation and the disease occur almost exclusively in individuals of identifiable African descent. In the United States, the amyloidogenic allele frequency is 0.0173 and is carried by 3.5% of community-dwelling African Americans. Genotyping across Africa indicates that the origin of the allele is in the West African countries that were the major source of the slave trade to North America. At autopsy, the allele was found to be associated with cardiac TTR amyloid deposition in all the carriers after age 65 years; however, the clinical penetrance varies, resulting in substantial heart disease in some carriers and few symptoms in others. The allele has been found in 10% of African Americans older than age 65 with severe congestive heart failure. At this time there are potential forms of therapy in clinical trials. The combination of a highly accurate genetic test and the potential for specific therapy demands a greater awareness of this autosomal dominant, age-dependent cardiac disease in the cardiology community.Genet Med advance online publication 19 January 2017.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Frederick L Ruberg
- Amyloidosis Center and Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
71
|
Kerschen P, Planté-Bordeneuve V. Current and Future Treatment Approaches in Transthyretin Familial Amyloid Polyneuropathy. Curr Treat Options Neurol 2016; 18:53. [PMID: 27873215 DOI: 10.1007/s11940-016-0436-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OPINION STATEMENT Treatment of transthyretin familial amyloid polyneuropathy (TTR FAP) must be tailored to disease stage. Patients with early stage disease (i.e., without major impairment in walking ability), especially younger patients, should be referred as soon as possible for liver transplantation (LT) in the absence of major comorbid conditions. LT remains the most effective treatment option to date and should be offered to these patients as early as possible. Bridging therapy with an oral TTR stabilizer (tafamidis or diflunisal, according to local access to these treatments) should be started as soon as the diagnosis of TTR FAP is established. Early stage patients who do not wish to or have contraindications to LT should be treated with an oral TTR stabilizer or get access to the newly developed therapeutic options (IONIS TTR-Rx, patisiran, doxycycline/TUDCA). Late stage patients (presenting with significant walking impairment) are usually older and notoriously difficult to treat. They should be offered an oral TTR stabilizer but are not candidates for LT due to a significant rate of perioperative complications and increased risk of progressive neurological and especially cardiac disease despite LT. Access to the different therapies in development should also be considered depending on respective inclusion and exclusion criteria. The abovementioned treatment options were mostly validated in Val30Met mutation patients, but should also be offered to non-Val30Met patients, although mortality rates after LT are higher in these patients. Treatment decisions should be made on an individual basis. Screening for heart, eye, and renal involvement is mandatory for every patient at disease diagnosis and regularly thereafter, even in transplanted patients. Symptomatic treatment should be offered as needed, as well as genetic counseling to at-risk family members. Asymptomatic mutation carriers should benefit from regular screening for early symptoms of disease. Current therapeutic management of TTR FAP will hopefully be changed in the near future with data from the ongoing phase 2/3 studies testing the TTR gene silencing agents. In the longer term, it is likely that combined therapeutic approaches will be necessary to reverse the disease process.
Collapse
Affiliation(s)
- Philippe Kerschen
- Service de Neurologie, Centre Hospitalier de Luxembourg, 4 rue Barblé, L-1210, Luxembourg, Luxembourg
| | - Violaine Planté-Bordeneuve
- Service de Neurologie, CHU Henri Mondor, 51 avenue de Lattre de Tassigny, 94000, Créteil, France. .,Groupe de Recherche Clinique Amylose, Université Paris-Est-Créteil, 94000, Créteil, France.
| |
Collapse
|
72
|
Galant NJ, Bugyei-Twum A, Rakhit R, Walsh P, Sharpe S, Arslan PE, Westermark P, Higaki JN, Torres R, Tapia J, Chakrabartty A. Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates: a potential diagnostic and therapeutic for TTR amyloidoses. Sci Rep 2016; 6:25080. [PMID: 27122057 PMCID: PMC4848561 DOI: 10.1038/srep25080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis(®) and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.e. monomers), we achieved fibril inhibition at substoichiometric concentrations. We developed an antibody (misTTR) that targets TTR residues 89-97, an epitope buried in the tetramer but exposed in the monomer. Nanomolar misTTR inhibits fibrillogenesis of misfolded TTR under micromolar concentrations. Pan-specific TTR antibodies do not possess such fibril inhibiting properties. We show that selective targeting of misfolding intermediates is an alternative to native state stabilization and requires substoichiometric concentrations. MisTTR or its derivative may have both diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Natalie J. Galant
- Princess Margaret Cancer Centre, University Health Network, Departments of Medical Biophysics and Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Antoinette Bugyei-Twum
- Princess Margaret Cancer Centre, University Health Network, Departments of Medical Biophysics and Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Rishi Rakhit
- Department of Chemical and Systems Biology, Stanford University, CA 94305, USA
| | - Patrick Walsh
- Molecular Structure and Function Program, the Hospital for Sick Children, Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Simon Sharpe
- Molecular Structure and Function Program, the Hospital for Sick Children, Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Pharhad Eli Arslan
- Princess Margaret Cancer Centre, University Health Network, Departments of Medical Biophysics and Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jeffrey N. Higaki
- Departments of Biochemistry and Histopathology, Prothena Biosciences Inc., South San Francisco, CA 94080
| | - Ronald Torres
- Departments of Biochemistry and Histopathology, Prothena Biosciences Inc., South San Francisco, CA 94080
| | - José Tapia
- Departments of Biochemistry and Histopathology, Prothena Biosciences Inc., South San Francisco, CA 94080
| | - Avijit Chakrabartty
- Princess Margaret Cancer Centre, University Health Network, Departments of Medical Biophysics and Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|