51
|
Haraguchi R, Hoshi H, Ichikawa S, Hanyu M, Nakamura K, Fukasawa K, Poza J, Rodríguez-González V, Gómez C, Shigihara Y. The Menstrual Cycle Alters Resting-State Cortical Activity: A Magnetoencephalography Study. Front Hum Neurosci 2021; 15:652789. [PMID: 34381340 PMCID: PMC8350571 DOI: 10.3389/fnhum.2021.652789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Resting-state neural oscillations are used as biomarkers for functional diseases such as dementia, epilepsy, and stroke. However, accurate interpretation of clinical outcomes requires the identification and minimisation of potential confounding factors. While several studies have indicated that the menstrual cycle also alters brain activity, most of these studies were based on visual inspection rather than objective quantitative measures. In the present study, we aimed to clarify the effect of the menstrual cycle on spontaneous neural oscillations based on quantitative magnetoencephalography (MEG) parameters. Resting-state MEG activity was recorded from 25 healthy women with normal menstrual cycles. For each woman, resting-state brain activity was acquired twice using MEG: once during their menstrual period (MP) and once outside of this period (OP). Our results indicated that the median frequency and peak alpha frequency of the power spectrum were low, whereas Shannon spectral entropy was high, during the MP. Theta intensity within the right temporal cortex and right limbic system was significantly lower during the MP than during the OP. High gamma intensity in the left parietal cortex was also significantly lower during the MP than during the OP. Similar differences were also observed in the parietal and occipital regions between the proliferative (the late part of the follicular phase) and secretory phases (luteal phase). Our findings suggest that the menstrual cycle should be considered to ensure accurate interpretation of functional neuroimaging in clinical practice.
Collapse
Affiliation(s)
- Rika Haraguchi
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, Japan
| | - Mayuko Hanyu
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan
| | - Kohei Nakamura
- Department of Gynaecology, Kumagaya General Hospital, Kumagaya, Japan.,Genomics Unit, Keio Cancer Centre, Keio University School of Medicine, Minato, Japan
| | | | - Jesús Poza
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain.,Instituto de Investigación en Matemáticas (IMUVA), University of Valladolid, Valladolid, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan.,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
52
|
Ruhnau P, Zaehle T. Transcranial Auricular Vagus Nerve Stimulation (taVNS) and Ear-EEG: Potential for Closed-Loop Portable Non-invasive Brain Stimulation. Front Hum Neurosci 2021; 15:699473. [PMID: 34194308 PMCID: PMC8236702 DOI: 10.3389/fnhum.2021.699473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
No matter how hard we concentrate, our attention fluctuates – a fact that greatly affects our success in completing a current task. Here, we review work from two methods that, in a closed-loop manner, have the potential to ameliorate these fluctuations. Ear-EEG can measure electric brain activity from areas in or around the ear, using small and thus portable hardware. It has been shown to capture the state of attention with high temporal resolution. Transcutaneous auricular vagus nerve stimulation (taVNS) comes with the same advantages (small and light) and critically current research suggests that it is possible to influence ongoing brain activity that has been linked to attention. Following the review of current work on ear-EEG and taVNS we suggest that a combination of the two methods in a closed-loop system could serve as a potential application to modulate attention.
Collapse
Affiliation(s)
- Philipp Ruhnau
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
53
|
Sleep and Cognition in People with Autism Spectrum Condition: A Systematic Literature Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2021. [DOI: 10.1007/s40489-021-00266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
55
|
A Fuzzy Shell for Developing an Interpretable BCI Based on the Spatiotemporal Dynamics of the Evoked Oscillations. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6685672. [PMID: 33936191 PMCID: PMC8055434 DOI: 10.1155/2021/6685672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Researchers in neuroscience computing experience difficulties when they try to carry out neuroanalysis in practice or when they need to design an explainable brain-computer interface (BCI) with quick setup and minimal training phase. There is a need of interpretable computational intelligence techniques and new brain states decoding for more understandable interpretation of the sensory, cognitive, and motor brain processing. We propose a general-purpose fuzzy software system shell for developing a custom EEG BCI system. It relies on the bursts of the ongoing EEG frequency power synchronization/desynchronization at scalp level and supports quick BCI setup by linguistic features, ad hoc fuzzy membership construction, explainable IF-THEN rules, and the concept of the Internet of Things (IoT), which makes the BCI system device and service independent. It has a potential for designing both passive and event-related BCIs with options for visual representation at scalp-source level in response to time. The feasibility of the proposed system has been proven by real experiments and bursts for β and γ frequency power have been detected in real time in response to evoked visuospatial selective attention. The presence of the proposed new brain state decoding can be used as a feasible metric for interpretation of the spatiotemporal dynamics of the passive or evoked neural oscillations.
Collapse
|
56
|
Olteanu C, Habibollahi F, French C. Effects of Several Classes of Voltage-Gated Ion Channel Conductances on Gamma and Theta Oscillations in a Hippocampal Microcircuit Model. Front Comput Neurosci 2021; 15:630271. [PMID: 33867962 PMCID: PMC8049632 DOI: 10.3389/fncom.2021.630271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma and theta oscillations have been functionally associated with cognitive processes, such as learning and memory. Synaptic conductances play an important role in the generation of intrinsic network rhythmicity, but few studies have examined the effects of voltage-gated ion channels (VGICs) on these rhythms. In this report, we have used a pyramidal-interneuron-gamma (PING) network consisting of excitatory pyramidal cells and two types of inhibitory interneurons. We have constructed a conductance-based neural network incorporating a persistent sodium current (INaP), a delayed rectifier potassium current (IKDR), a inactivating potassium current (IA) and a hyperpolarization-activated current (IH). We have investigated the effects of several conductances on network theta and gamma frequency oscillations. Variation of all conductances of interest changed network rhythmicity. Theta power was altered by all conductances tested. Gamma rhythmogenesis was dependent on IA and IH. The IKDR currents in excitatory pyramidal cells as well as both types of inhibitory interneurons were essential for theta rhythmogenesis and altered gamma rhythm properties. Increasing INaP suppressed both gamma and theta rhythms. Addition of noise did not alter these patterns. Our findings suggest that VGICs strongly affect brain network rhythms. Further investigations in vivo will be of great interest, including potential effects on neural function and cognition.
Collapse
Affiliation(s)
- Chris Olteanu
- Melbourne Brain Centre, The University of Melbourne, Parkville, VIC, Australia
| | - Forough Habibollahi
- Melbourne Brain Centre, The University of Melbourne, Parkville, VIC, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Chris French
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
57
|
Phase-Dependent Deep Brain Stimulation: A Review. Brain Sci 2021; 11:brainsci11040414. [PMID: 33806170 PMCID: PMC8103241 DOI: 10.3390/brainsci11040414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neural oscillations are repetitive patterns of neural activity in the central nervous systems. Oscillations of the neurons in different frequency bands are evident in electroencephalograms and local field potential measurements. These oscillations are understood to be one of the key mechanisms for carrying out normal functioning of the brain. Abnormality in any of these frequency bands of oscillations can lead to impairments in different cognitive and memory functions leading to different pathological conditions of the nervous system. However, the exact role of these neural oscillations in establishing various brain functions is still under investigation. Closed loop deep brain stimulation paradigms with neural oscillations as biomarkers could be used as a mechanism to understand the function of these oscillations. For making use of the neural oscillations as biomarkers to manipulate the frequency band of the oscillation, phase of the oscillation, and stimulation signal are of importance. This paper reviews recent trends in deep brain stimulation systems and their non-invasive counterparts, in the use of phase specific stimulation to manipulate individual neural oscillations. In particular, the paper reviews the methods adopted in different brain stimulation systems and devices for stimulating at a definite phase to further optimize closed loop brain stimulation strategies.
Collapse
|
58
|
Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon 2021; 7:e06363. [PMID: 33732922 PMCID: PMC7937662 DOI: 10.1016/j.heliyon.2021.e06363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Up now, the communication between brains of different humans or animals has been confirmed and confined by the sensory medium and motor facilities of body. Recently, direct brain-to-brain communication (DBBC) outside the conventional five senses has been verified between animals and humans. Nevertheless, no empirical studies or serious discussion have been performed to elucidate the mechanism behind this process. The validation of DBBC has been documented via recording similar pattern of action potentials occurring in the brain cortex of two animals. With regard to action potentials in brain neurons, the magnetic field resulting from the action potentials created in neurons is one of the tools where the brain of one animal can affect the brain of another. It has been shown that different animals, even humans, have the power to understand the magnetic field. Cryptochrome, which exists in the retina and in different regions of the brain, has been confirmed to be able to perceive magnetic fields and convert magnetic fields to action potentials. Recently, iron particles (Fe3O4) believed to be functioning as magnets have been found in various parts of the brain, and are postulated as magnetic field receptors. Newly developed supersensitive magnetic sensors made of iron magnets that can sense the brain's magnetic field have suggested the idea that these Fe3O4 particles or magnets may be capable of perceiving the brain's extremely weak magnetic field. The present study suggests that it is possible the extremely week magnetic field in one animal's brain to transmit vital and accurate information to another animal's brain.
Collapse
|
59
|
Lippmann B, Barmashenko G, Funke K. Effects of repetitive transcranial magnetic and deep brain stimulation on long-range synchrony of oscillatory activity in a rat model of developmental schizophrenia. Eur J Neurosci 2021; 53:2848-2869. [PMID: 33480084 DOI: 10.1111/ejn.15125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Aberrant neuronal network activity likely resulting from disturbed interactions of excitatory and inhibitory systems may be a major cause of cognitive deficits in neuropsychiatric diseases, like within the spectrum of schizophrenic phenotypes. In particular, the synchrony and pattern of oscillatory brain activity appears to be disturbed within limbic networks, e.g. between prefrontal cortex and hippocampus. In a rat model of maternal immune activation (MIA), we compared the acute effects of deep brain stimulation within either medial prefrontal cortex or ventral hippocampus with the effects of repetitive transcranial magnetic stimulation (rTMS), using the intermittent theta-burst protocol (iTBS), on oscillatory activity within limbic structures. Simultaneous local field potential recordings were made from medial prefrontal cortex, ventral hippocampus, nucleus accumbens and rostral part of ventral tegmental area before and after deep brain stimulation in anaesthetized rats previously (~3 h) treated with sham or verum rTMS. We found a waxing and waning pattern of theta and gamma activity in all structures which was less synchronous in particular between medial prefrontal cortex and ventral hippocampus in MIA offspring. Deep brain stimulation in medial prefrontal cortex and pre-treatment with iTBS-rTMS partly improved this pattern. Gamma-theta cross-frequency coupling was stronger in MIA offspring and could partly be reduced by deep brain stimulation in medial prefrontal cortex. We can confirm aberrant limbic network activity in a rat MIA model, and at least acute normalizing effects of the neuromodulatory methods. It has to be proven whether these procedures can have chronic effects suitable for therapeutic purposes.
Collapse
Affiliation(s)
- Benjamin Lippmann
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Gleb Barmashenko
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,AIO-Studien-gGmbH, Berlin, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
60
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
61
|
Amidfar M, Kim YK. EEG Correlates of Cognitive Functions and Neuropsychiatric Disorders: A Review of Oscillatory Activity and Neural Synchrony Abnormalities. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201209130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A large body of evidence suggested that disruption of neural rhythms and
synchronization of brain oscillations are correlated with a variety of cognitive and perceptual processes.
Cognitive deficits are common features of psychiatric disorders that complicate treatment of
the motivational, affective and emotional symptoms.
Objective:
Electrophysiological correlates of cognitive functions will contribute to understanding of
neural circuits controlling cognition, the causes of their perturbation in psychiatric disorders and
developing novel targets for the treatment of cognitive impairments.
Methods:
This review includes a description of brain oscillations in Alzheimer’s disease, bipolar
disorder, attention-deficit/hyperactivity disorder, major depression, obsessive compulsive disorders,
anxiety disorders, schizophrenia and autism.
Results:
The review clearly shows that the reviewed neuropsychiatric diseases are associated with
fundamental changes in both spectral power and coherence of EEG oscillations.
Conclusion:
In this article, we examined the nature of brain oscillations, the association of brain
rhythms with cognitive functions and the relationship between EEG oscillations and neuropsychiatric
diseases. Accordingly, EEG oscillations can most likely be used as biomarkers in psychiatric
disorders.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
62
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
63
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
64
|
Esmaeilpour Z, Kronberg G, Reato D, Parra LC, Bikson M. Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimul 2020; 14:55-65. [PMID: 33186778 PMCID: PMC9382891 DOI: 10.1016/j.brs.2020.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Temporal interference (TI) stimulation of the brain generates amplitude-modulated electric fields oscillating in the kHz range with the goal of non-invasive targeted deep brain stimulation. Yet, the current intensities required in human (sensitivity) to modulate deep brain activity and if superficial brain region are spared (selectivity) at these intensities remains unclear. OBJECTIVE We developed an experimentally constrained theory for TI sensitivity to kHz electric field given the attenuation by membrane low-pass filtering property, and for TI selectivity to deep structures given the distribution of modulated and unmodulated electric fields in brain. METHODS The electric field threshold to modulate carbachol-induced gamma oscillations in rat hippocampal slices was determined for unmodulated 0.05-2 kHz sine waveforms, and 5 Hz amplitude-modulated waveforms with 0.1-2 kHz carrier frequencies. The neuronal effects are replicated with a computational network model to explore the underlying mechanisms, and then coupled to a validated current-flow model of the human head. RESULTS Amplitude-modulated electric fields are stronger in deep brain regions, while unmodulated electric fields are maximal at the cortical regions. Both experiment and model confirmed the hypothesis that spatial selectivity of temporal interference stimulation depends on the phasic modulation of neural oscillations only in deep brain regions. Adaptation mechanism (e.g. GABAb) enhanced sensitivity to amplitude modulated waveform in contrast to unmodulated kHz and produced selectivity in modulating gamma oscillation (i.e. Higher gamma modulation in amplitude modulated vs unmodulated kHz stimulation). Selection of carrier frequency strongly affected sensitivity to amplitude modulation stimulation. Amplitude modulated stimulation with 100 Hz carrier frequency required ∼5 V/m (corresponding to ∼13 mA at the scalp surface), whereas, 1 kHz carrier frequency ∼60 V/m (∼160 mA) and 2 kHz carrier frequency ∼80 V/m (∼220 mA) to significantly modulate gamma oscillation. Sensitivity is increased (scalp current required decreased) for theoretical neuronal membranes with faster time constants. CONCLUSION The TI sensitivity (current required at the scalp) depends on the neuronal membrane time-constant (e.g. axons) approaching the kHz carrier frequency. TI selectivity is governed by network adaption (e.g. GABAb) that is faster than the amplitude-modulation frequency. Thus, we show neuronal and network oscillations time-constants determine the scalp current required and the selectivity achievable with TI in humans.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Davide Reato
- Champalimaud Centre for the Unknown, Neuroscience Program, Lisbon, Portugal
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
65
|
Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 2020; 4:1122-1159. [PMID: 33195951 PMCID: PMC7655113 DOI: 10.1162/netn_a_00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Erfan Nozari
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Harang Ju
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Cassiano Becker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA USA
| | - George J. Pappas
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
66
|
Abstract
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , , .,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts 02215, USA.,Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
67
|
Yu XY, Liao KR, Niu ZK, Wang K, Cheung EFC, Li XL, Chan RCK. Resting frontal EEG asymmetry and schizotypal traits: a test-retest study. Cogn Neuropsychiatry 2020; 25:333-347. [PMID: 32731803 DOI: 10.1080/13546805.2020.1800448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Increase in right relative to left frontal electroencephalography (EEG) activity has been observed in patients with schizophrenia, both in cognitive tasks and during rest; and this lateralisation may be related to the severity of schizotypal traits. Methods: We used the Schizotypal Personality Questionnaire (SPQ) to assess schizotypal traits, and examined the correlation between these traits and resting EEG frontal asymmetry (left-right) in 52 college students, as well as the reliability of this correlation over a three-month interval. Results: A higher total score on the SPQ was correlated with reduced asymmetry in different frequency bands: gamma and beta2 frequency bands at baseline, and delta and alpha frequency bands three months later. Additionally, the reduced left relative to right frontal gamma and beta2 asymmetry was correlated with the participants' verbal fluency ability. However, this correlation was no longer statistically significant after the total SPQ score was controlled. Conclusions: These findings suggest that resting frontal EEG asymmetry is correlated with powers in different frequency bands, and may be an endophenotype for schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Xin-Yang Yu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ke-Ren Liao
- Shenzhen Health Development Research Center, Shenzhen, People's Republic of China
| | - Zi-Kang Niu
- Castle Peak Hospital, Hong Kong Administrative Region, People's Republic of China
| | - Kui Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Administrative Region, People's Republic of China
| | - Xiao-Li Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
68
|
Rürup L, Mathes B, Schmiedt-Fehr C, Wienke AS, Özerdem A, Brand A, Basar-Eroglu C. Altered gamma and theta oscillations during multistable perception in schizophrenia. Int J Psychophysiol 2020; 155:127-139. [DOI: 10.1016/j.ijpsycho.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
|
69
|
Leonhardt BL, Vohs JL, Bartolomeo LA, Visco A, Hetrick WP, Bolbecker AR, Breier A, Lysaker PH, O'Donnell BF. Relationship of Metacognition and Insight to Neural Synchronization and Cognitive Function in Early Phase Psychosis. Clin EEG Neurosci 2020; 51:259-266. [PMID: 31241355 DOI: 10.1177/1550059419857971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metacognition is the process of thinking about one's own mental states. It involves a range of faculties that allow an individual to integrate information and form understanding of self and others, and use this understanding to respond to life challenges. Clinical insight is the awareness of one's mental illness, its consequences, and the need for treatment. Persons with psychotic disorders show impaired metacognition and insight, but the neurobiological bases for these impairments are not well characterized. We hypothesized that metacognition and insight may depend on capacity of neural circuits to synchronize at gamma frequencies, as well as the integrity of underlying cognitive processes. In order to test these hypotheses, 17 adults with early phase psychosis were evaluated. Metacognition was assessed with the Metacognition Assessment Scale-Abbreviated, and insight was assessed with the Scale of Unawareness of Illness-Abbreviated. The auditory steady state response (ASSR) to gamma range stimulation (40 Hz) was used as an index of neural synchronization. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia. Increases in ASSR power were associated with poorer metacognition and insight. Higher cognitive performance was associated with higher levels of metacognitive function and insight. These findings suggest that altered neural synchronization and constituent cognitive processes affect both metacognition and insight in early phase psychosis and may offer targets for both pharmacological and psychotherapeutic interventions.
Collapse
Affiliation(s)
- Bethany L Leonhardt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jenifer L Vohs
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Indianapolis, IN, USA
| | - Lisa A Bartolomeo
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Indianapolis, IN, USA
| | - Andrew Visco
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Indianapolis, IN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Indianapolis, IN, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul H Lysaker
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
70
|
Ehlers CL, Phillips E, Wills D, Benedict J, Sanchez-Alavez M. Phase locking of event-related oscillations is decreased in both young adult humans and rats with a history of adolescent alcohol exposure. Addict Biol 2020; 25:e12732. [PMID: 30884076 PMCID: PMC6751029 DOI: 10.1111/adb.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/25/2023]
Abstract
Alcohol exposure typically begins in adolescence, and frequent binge drinking has been associated with health risk behaviors including alcohol use disorders (AUDs). Few studies have documented the effects of a history of adolescent binge drinking on neurophysiological consequences in young adulthood. Synchrony of phase (phase locking (PL)) of event-related oscillations (EROs) within and between different brain areas reflects communication exchange between neural networks and is a sensitive measure of adolescent development in both rats and humans, and thus may be a good translational measure of the potential harmful effects of alcohol exposure during adolescence. In this study, EROs were collected from 1041 young adults of Mexican American and American Indian ancestry (age 18-30 years) with and without a history of adolescent binge drinking (five drinks for boys and four for girls per occasion at least once per month) and in 74 young adult rats with and without a history of 5 weeks of adolescent alcohol vapor exposure. PL of theta and beta frequencies between frontal and parietal cortex were estimated using an auditory-oddball paradigm in the rats and a visual facial expression paradigm in the humans. Significantly lower PL between frontal and parietal cortices in the theta frequencies was seen in both the humans and the rats with a history of adolescent alcohol exposure as compared with their controls. These findings suggest that alcohol exposure during adolescence may result in decreases in synchrony between cortical neuronal networks, suggesting a developmental delay, in young adult humans and in rats.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Evie Phillips
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Derek Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jessica Benedict
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
71
|
Hachmann WM, Cashdollar N, Postiglione F, Job R. The relationship of domain-general serial order memory and reading ability in school children with and without dyslexia. J Exp Child Psychol 2020; 193:104789. [PMID: 32007625 DOI: 10.1016/j.jecp.2019.104789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
Abstract
Recent evidence suggests that reading development when learning alphabetic languages is related to the underlying cognitive ability to maintain the serial order of information in short-term memory (STM). However, it remains unclear at which time point in reading development serial order STM is most important. Here, we established a crucial link between the reading development of primary school children and their serial order STM performance for both verbal and nonverbal materials. In a large cohort study of 113 Italian-speaking elementary school children in Grades 1-4, we investigated this relationship by implementing a novel double-probe design. In Experiment 1, we found that serial order STM performance was related to children's reading abilities, especially in Grades 2 and 3, corresponding to the training phase of grapheme-phoneme decoding skills. In Experiment 2, we assessed children with developmental dyslexia (DD) and found that their serial order STM performance was significantly lower than that of chronological age-matched controls (CA). It also differed from that of reading age-matched controls when accounting for individual reading performance. Furthermore, the CA group displayed an implicit serial order facilitation for item memory, whereas this implicit recruitment of serial order abilities was completely absent in children with DD. Our results suggest that the domain-general cognitive ability to maintain the serial order of information interacts with the development of reading competency, especially during a middle training phase of word reading, and this particular relationship is markedly impaired in children with DD.
Collapse
Affiliation(s)
- Wibke Maria Hachmann
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Trentino, Italy.
| | - Nathan Cashdollar
- Center of Mind and Brain Science, University of Trento, 38068 Rovereto, Trentino, Italy
| | - Francesca Postiglione
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Trentino, Italy
| | - Remo Job
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Trentino, Italy
| |
Collapse
|
72
|
Bochkarev V, Solnceva S, Kirenskaya A, Tkachenko A. A comparative study of the P300 wave and evoked theta-rhythm in schizophrenia and personality disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:41-47. [DOI: 10.17116/jnevro202012003141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Disruption of gamma-delta relationship related to working memory deficits in first-episode psychosis. J Neural Transm (Vienna) 2019; 127:103-115. [PMID: 31858267 DOI: 10.1007/s00702-019-02126-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
Working memory (WM) deficits constitute a core symptom of schizophrenia. Inadequacy of WM maintenance in schizophrenia has been reported to reflect abnormalities in the excitation/inhibition (E/I) balance between pyramidal neurons and parvalbumin basket cells, which may explain alterations of the dynamics of gamma and delta oscillations. To address this issue, we assessed event-related gamma (35-45 Hz) and delta (0.5-4 Hz) oscillatory responses in a visual n-back WM task in patients with first-episode psychosis (FEP) and healthy controls (HC). Periodicity analyses of oscillations were computed to explore the relationship between the psychiatric status and the WM load-related processes reflected by each frequency range. The correspondence between nested delta-gamma oscillations was estimated to assess the strength of the frontal E/I balance. In HC, gamma oscillations were synchronized by the stimulus in a 50-150 ms time range for all tasks, and periodicity of the delta cycle was comparable between the tasks. In addition, synchronization of gamma oscillations in HC occurred at the maximal descending phase of the delta cycle half-period, supporting the coexistence of delta-nested gamma oscillations. Compared with controls, FEP patients showed a lack of gamma synchronization independently of the nature of the task, and the period of delta oscillation increased significantly with the difficulty of the WM task. We thus demonstrated in FEP an inability to encode multiple items in short-term memory associated with abnormalities in the relationship between oscillations related to the difficulty of the WM task. These results argue in favor of a dysfunction of the E/I balance in psychosis.
Collapse
|
74
|
Panzica F, Schiaffi E, Visani E, Franceschetti S, Giovagnoli AR. Gamma electroencephalographic coherence and theory of mind in healthy subjects. Epilepsy Behav 2019; 100:106435. [PMID: 31427268 DOI: 10.1016/j.yebeh.2019.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
PURPOSE Structural brain imaging has revealed that damage to different brain regions may impair theory of mind (ToM) while functional imaging has shown that distributed neural circuits are activated by ToM and empathy. However, the coherence of the electroencephalogram (EEG) frequencies in a definite time span may change during these processes, indicating different neurophysiological correlates. This study evaluated the changes of EEG coherence during ToM tasks in comparison with Empathy, Physical causality, and baseline conditions, aiming to determine the neurophysiological correlates of ToM. METHODS Sixteen healthy adults underwent a visual activation paradigm using 30 comic strips concerning ToM, Empathy, or Physical causality during EEG recording. The interhemispheric coherence was estimated using a bivariate autoregressive (AR) parametric model. The coherence spectra were analyzed in the alpha, beta, and gamma frequency EEG bands. RESULTS Coherence analysis taking all of the responses showed that in the gamma band, in comparison with the Empathy, Physical causality, and baseline conditions, ToM was associated with significantly higher peaks between the frontal and parietal areas in the right hemisphere and, in comparison with the Physical causality and baseline conditions, in the left hemisphere. Analysis taking the correct responses confirmed these results. CONCLUSIONS In healthy adults, ToM processes are associated with immediate specific changes of brain connectivity, as expressed by high cortical coherence within the right frontal and parietal areas. These previously unexplored aspects indicate an online involvement of the right hemisphere networks in normal ToM. In patients with epilepsy, the study of EEG coherence during specific tasks may help determine the neural dysfunctions associated with impaired ToM. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan".
Collapse
Affiliation(s)
- Ferruccio Panzica
- Unit of Neurophysiopathology, Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy.
| | - Elena Schiaffi
- Unit of Neurophysiopathology, Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Elisa Visani
- Unit of Neurophysiopathology, Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Silvana Franceschetti
- Unit of Neurophysiopathology, Department of Diagnostics and Applied Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Anna Rita Giovagnoli
- Unit of Neurology and Neuropathology, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
75
|
Oscillatory gamma activity mediates the pathway from socioeconomic status to language acquisition in infancy. Infant Behav Dev 2019; 57:101384. [DOI: 10.1016/j.infbeh.2019.101384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/25/2023]
|
76
|
Clancy KJ, Baisley SK, Albizu A, Kartvelishvili N, Ding M, Li W. Lasting connectivity increase and anxiety reduction via transcranial alternating current stimulation. Soc Cogn Affect Neurosci 2019; 13:1305-1316. [PMID: 30380131 PMCID: PMC6277743 DOI: 10.1093/scan/nsy096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Growing evidence of transcranial alternating current stimulation (tACS) modulating intrinsic neural oscillations has spawned interest in applying tACS to treat psychiatric disorders associated with aberrant neural oscillations. The alpha rhythmic activity is known to dominate neural oscillations at the awake, restful state, while attenuated resting-state alpha activity has been implicated in anxious mood. Administering repeated alpha-frequency tACS (α-tACS; at individual peak alpha frequency; 8–12 Hz) over four consecutive days (in the experiment group, sham stimulation in the control group), we demonstrated immediate and lasting (>24 h) increases in resting-state posterior ➔frontal connectivity in the alpha frequency, quantified by Granger causality. Critically, this connectivity enhancement was accompanied by sustained reductions in both anxious arousal and negative perception of sensory stimuli. Resting-state alpha power also increased, albeit only transiently, reversing to the baseline level within 24 h after tACS. Therefore, the lasting enhancement of long-range alpha connectivity due to α-tACS differs from local alpha activity that is nonetheless conserved, highlighting the adaptability of alpha oscillatory networks. In light of increasing recognition of large-scale network dysfunctions as a transdiagnostic pathophysiology of psychiatric disorders, this enduring connectivity plasticity, along with the behavioral improvements, paves the way for tACS applications in clinical interventions of psychiatric ‘oscillopathies’.
Collapse
Affiliation(s)
- Kevin J Clancy
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Sarah K Baisley
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Alejandro Albizu
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
77
|
Alteration of parvalbumin expression and perineuronal nets formation in the cerebral cortex of aged mice. Mol Cell Neurosci 2019; 95:31-42. [DOI: 10.1016/j.mcn.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
|
78
|
Arikan MK, Metin B, Metin SZ, Tülay EE, Tarhan N. High Frequencies in QEEG Are Related to the Level of Insight in Patients With Schizophrenia. Clin EEG Neurosci 2018; 49:316-320. [PMID: 29984595 DOI: 10.1177/1550059418785489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lack of insight is a neurocognitive problem commonly encountered in patients with psychotic disorders that negatively affects treatment compliance and prognosis. Measurement of insight is based on self-report scales, which are limited due to subjectivity. This study aimed to determine the correlation between resting state beta and gamma power in 23 patients with schizophrenia and insight. It was observed that as beta and gamma power measured via qualitative electroencephalography (qEEG) increased the level of insight decreased. Negative correlation was found in F3, C3, Cz for gamma activity and in F3 and C3 for beta activity. This finding indicates that resting state qEEG could be used to evaluate the level of insight in patients with schizophrenia.
Collapse
Affiliation(s)
- Mehmet Kemal Arikan
- 1 Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey
| | - Baris Metin
- 1 Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey
| | | | - Emine Elif Tülay
- 3 Technology Transfer Office, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- 1 Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,2 Department of Psychiatry, NPIstanbul Brain Hospital, Istanbul, Turkey
| |
Collapse
|
79
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
80
|
Isoglu-Alkac U, Ermutlu MN, Eskikurt G, Yücesir İ, Demirel Temel S, Temel T. Dancers and fastball sports athletes have different spatial visual attention styles. Cogn Neurodyn 2018; 12:201-209. [PMID: 29564028 DOI: 10.1007/s11571-017-9469-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022] Open
Abstract
Physical exercise and the training effects of repeated practice of skills over an extended period of time may have additive effects on brain networks and functions. Various motor skills and attentional styles can be developed by athletes engaged in different sports. In this study, the effects of fast ball sports and dance training on attention were investigated by event related potentials (ERP). ERP were recorded in auditory and visual tasks in professional dancer, professional fast ball sports athlete (FBSA) and healthy control volunteer groups consisting of twelve subjects each. In the auditory task both dancer and FBSA groups have faster N200 (N2) and P300 (P3) latencies than the controls. In the visual task FBSA have faster latencies of P3 than the dancers and controls. They also have higher P100 (P1) amplitudes to non-target stimuli than the dancers and controls. On the other hand, dancers have faster latencies of P1 and higher N100 (N1) amplitude to non-target stimuli and they also have higher P3 amplitudes than the FBSA and controls. Overall exercise has positive effects on cognitive processing speed as reflected on the faster auditory N2 and P3 latencies. However, FBSA and dancers differed on attentional styles in the visual task. Dancers displayed predominantly endogenous/top down features reflected by increased N1 and P3 amplitudes, decreased P1 amplitude and shorter P1 latency. On the other hand, FBSA showed predominantly exogenous/bottom up processes revealed by increased P1 amplitude. The controls were in between the two groups.
Collapse
Affiliation(s)
- Ummuhan Isoglu-Alkac
- 1Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Numan Ermutlu
- 2Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Gökçer Eskikurt
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - İlker Yücesir
- 4School of Physical Education and Sports, Istanbul University, Istanbul, Turkey
| | - Sernaz Demirel Temel
- 5Department of Music and Performing Arts, The Art and Design Faculty, YTU, Istanbul, Turkey
| | - Tan Temel
- 5Department of Music and Performing Arts, The Art and Design Faculty, YTU, Istanbul, Turkey
| |
Collapse
|
81
|
Cohen MX. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters. Eur J Neurosci 2017; 48:2454-2465. [DOI: 10.1111/ejn.13727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Michael X Cohen
- Donders Center for Neuroscience; Radboud University and Radboud University Medical Center; Kapittelweg 29 6525 EN Nijmegen The Netherlands
| |
Collapse
|
82
|
Peng Q, Schork NJ, Wilhelmsen KC, Ehlers CL. Whole genome sequence association and ancestry-informed polygenic profile of EEG alpha in a Native American population. Am J Med Genet B Neuropsychiatr Genet 2017; 174:435-450. [PMID: 28436151 PMCID: PMC5435561 DOI: 10.1002/ajmg.b.32533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
EEG alpha activity is the dominant oscillation in most adult humans, is highly heritable, and has been associated with a number of cognitive functions. Two EEG phenotypes, low- and high-voltage alpha (LVA & HVA), have been demonstrated to have high heritabilities. They have different prevalence depending on a population's ancestral origins. In the present study we assessed the influence of ancestry admixture on EEG alpha power, and conducted a whole genome sequencing association analysis and an ancestry-informed polygenic study on those phenotypes in a Native American (NA) population that has a high prevalence of LVA. Seven common variants, in LD with each other upstream from gene ASIC2, reached genome-wide significance (p = 2 × 10-8 ) having a positive association with alpha voltage. They had lower minor allele frequencies in the NAs than in a global population sample. Overall correlations between lower degrees of NA (higher degree European) ancestry and HVA, and higher degrees of NA and LVA were also found. Additionally a rare-variant gene-based study identified gene TIA1 being negatively associated with LVA. Approximately 3% of SNPs exhibited a 15-fold enrichment that explained nearly half of the total SNP-heritability for EEG alpha. These regions showed the most significant anti-correlations between NA ancestry and alpha voltage, and were enriched for genes and pathways mediating cognitive functions. Our findings suggested that these regions likely harbor causal variants for HVA, and lacking of such variants could explain the high prevalence of LVA in this NA population, possibly illuminating the ancestral origin and genetic basis for EEG alpha.
Collapse
Affiliation(s)
- Qian Peng
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Nicholas J. Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Kirk C. Wilhelmsen
- Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Cindy L. Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
83
|
|
84
|
Missonnier P, Curtis L, Ventura J, Herrmann FR, Merlo MCG. Differences of temporal dynamics and signal complexity of gamma band oscillations in first-episode psychosis during a working memory task. J Neural Transm (Vienna) 2017; 124:853-862. [PMID: 28466380 DOI: 10.1007/s00702-017-1728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Gamma band oscillations participate in the temporal binding needed to synchronize cortical networks, involved in early sensory and short term memory processes. In earlier studies, alterations of these neurophysiological parameters have been found in psychotic disorders. To date no study has explored the temporal dynamics and signal complexity of gamma band oscillations in first episode psychosis (FEP). To address this issue, gamma band analysis was performed in 15 FEP patients and 18 healthy controls who successfully performed an adapted 2-back working memory task. Multiple linear and logistic regression models were computed to explore the relationship between the cognitive status and gamma oscillation changes over time. Based on regression model results, phase diagrams were constructed and their complexity was estimated using fractal dimension, a mathematical tool that describes shapes as numeric values. When adjusted for gamma values at time lags -3 to -4 ms and -15 to -16 ms, FEP patients displayed significantly higher time-dependent changes than controls, independently of the nature of the task. The present results are consistent with a discoordination of the activity of cortical generators engaged by the stimulus apparition in FEP patients, leading to a global binding deficit. In addition, fractal analysis showing higher complexity of gamma signal, confirmed this deficit. Our results provide evidence for recruitment of supplementary cortical generators as compensating mechanisms and yield further understanding for the pathophysiology cognitive impairments in FEP.
Collapse
Affiliation(s)
- Pascal Missonnier
- Unit of Psychiatric Neuroscience and Psychotherapy, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland. .,Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, L'Hôpital 140, Case postale 90, 1633, Marsens, Switzerland.
| | - Logos Curtis
- Young Adult Psychiatry Unit, Division of Specialized Psychiatry, Department of Mental Health and Psychiatry, Faculty of Medicine of the University of Geneva, University Hospitals of Geneva, Rue de Lausanne 67, Genève, 1202, Geneva, Switzerland
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, UCLA Department of Psychiatry, 300 Medical Plaza, Room 2243, Los Angeles, CA, 90095-6968, USA
| | - François R Herrmann
- Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals of Geneva, 3 chemin Pont-Bochet, Thônex, 1226, Geneva, Switzerland
| | - Marco C G Merlo
- Unit of Psychiatric Neuroscience and Psychotherapy, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
85
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Edenberg HJ, Wetherill L, Schuckit M, Wang JC, Kuperman S, Kramer J, Tischfield JA, Porjesz B. A KCNJ6 gene polymorphism modulates theta oscillations during reward processing. Int J Psychophysiol 2017; 115:13-23. [PMID: 27993610 PMCID: PMC5392377 DOI: 10.1016/j.ijpsycho.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
Event related oscillations (EROs) are heritable measures of neurocognitive function that have served as useful phenotype in genetic research. A recent family genome-wide association study (GWAS) by the Collaborative Study on the Genetics of Alcoholism (COGA) found that theta EROs during visual target detection were associated at genome-wide levels with several single nucleotide polymorphisms (SNPs), including a synonymous SNP, rs702859, in the KCNJ6 gene that encodes GIRK2, a G-protein inward rectifying potassium channel that regulates excitability of neuronal networks. The present study examined the effect of the KCNJ6 SNP (rs702859), previously associated with theta ERO to targets in a visual oddball task, on theta EROs during reward processing in a monetary gambling task. The participants were 1601 adolescent and young adult offspring within the age-range of 17-25years (800 males and 801 females) from high-dense alcoholism families as well as control families of the COGA prospective study. Theta ERO power (3.5-7.5Hz, 200-500ms post-stimulus) was compared across genotype groups. ERO theta power at central and parietal regions increased as a function of the minor allele (A) dose in the genotype (AA>AG>GG) in both loss and gain conditions. These findings indicate that variations in the KCNJ6 SNP influence magnitude of theta oscillations at posterior loci during the evaluation of loss and gain, reflecting a genetic influence on neuronal circuits involved in reward-processing. Increased theta power as a function of minor allele dose suggests more efficient cognitive processing in those carrying the minor allele of the KCNJ6 SNPs. Future studies are needed to determine the implications of these genetic effects on posterior theta EROs as possible "protective" factors, or as indices of delays in brain maturation (i.e., lack of frontalization).
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Niklas Manz
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Arthur T Stimus
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Leah Wetherill
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc Schuckit
- University of California San Diego Medical Center, San Diego, CA, USA
| | | | | | | | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
86
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
87
|
Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Front Hum Neurosci 2017; 11:51. [PMID: 28275344 PMCID: PMC5319996 DOI: 10.3389/fnhum.2017.00051] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023] Open
Abstract
Neurofeedback is attracting renewed interest as a method to self-regulate one’s own brain activity to directly alter the underlying neural mechanisms of cognition and behavior. It not only promises new avenues as a method for cognitive enhancement in healthy subjects, but also as a therapeutic tool. In the current article, we present a review tutorial discussing key aspects relevant to the development of electroencephalography (EEG) neurofeedback studies. In addition, the putative mechanisms underlying neurofeedback learning are considered. We highlight both aspects relevant for the practical application of neurofeedback as well as rather theoretical considerations related to the development of new generation protocols. Important characteristics regarding the set-up of a neurofeedback protocol are outlined in a step-by-step way. All these practical and theoretical considerations are illustrated based on a protocol and results of a frontal-midline theta up-regulation training for the improvement of executive functions. Not least, assessment criteria for the validation of neurofeedback studies as well as general guidelines for the evaluation of training efficacy are discussed.
Collapse
Affiliation(s)
- Stefanie Enriquez-Geppert
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioural and Social Sciences, University of Groningen Groningen, Netherlands
| | - René J Huster
- Department of Psychology, Faculty of Social Sciences, University of Oslo Oslo, Norway
| | - Christoph S Herrmann
- Experimental Psychology Laboratory, Department of Psychology, Faculty VI Medical and Health Sciences, University of Oldenburg Oldenburg, Germany
| |
Collapse
|
88
|
Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry 2017; 41:10-15. [DOI: 10.1016/j.eurpsy.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/08/2023] Open
Abstract
AbstractWhen directly perturbed in healthy subjects, premotor cortical areas generate electrical oscillations in the beta range (20–40 Hz). In schizophrenia, major depressive disorder and bipolar disorder (BD), these oscillations are markedly reduced, in terms of amplitude and frequency. However, it still remains unclear whether these abnormalities can be modulated over time, or if they can be still observed after treatment. Here, we employed transcranial magnetic stimulation (TMS) combined with EEG to assess the frontal oscillatory activity in eighteen BD patients before/after antidepressant treatments (sleep deprivation and light therapy), relative to nine healthy controls. In order to detect dominant frequencies, event related spectral perturbations (ERSP) were computed for each TMS/EEG session in all participants, using wavelet decomposition. The natural frequency at which the cortical circuit oscillates was calculated as the frequency value with the largest power across 300 ms post-stimulus time interval. Severity of depression markedly decreased after treatment with 12 patients achieving response and nine patients achieving remission. TMS/EEG resulted in a significant activation of the beta/gamma band response (21–50 Hz) in healthy controls. In patients, the main frequencies of premotor EEG responses to TMS did not significantly change before/after treatment and were always significantly lower than those of controls (11–27 Hz) and comparable in patients achieving remission and in those not responding to treatment. These results suggest that the reduction of natural frequencies is a trait marker of BD, independent from the clinical status of the patients. The present findings shed light on the neurobiological underpinning of severe psychiatric disorders and demonstrate that TMS/EEG represents a unique tool to develop biomarkers in psychiatry.
Collapse
|
89
|
Jonak K, Krukow P, Karakuła-Juchnowicz H. Hyper-coherence and increased energy of gamma oscillations in patient with first onset schizophrenia and cerebral white matter damage. CURRENT PROBLEMS OF PSYCHIATRY 2016. [DOI: 10.1515/cpp-2016-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background: According to current knowledge, gamma frequency is closely related to the functioning of neural networks underlying the basic activity of the brain and mind. Disorders in mechanisms synchronizing brain activity observed in patients diagnosed with schizophrenia are at the roots of neurocognitive disorders and psychopathological symptoms of the disease. Synchronization mechanisms are also related to the structure and functional effectiveness of the white matter. So far, not many analysis has been conducted concerning changes in the image of high frequency in patients with comorbid schizophrenia and white matter damage. The aim of this research was to present specific features of gamma waves in subjects with different psychiatric diagnoses and condition of brain structure.
Methods: Quantitative analysis of an EEG record registered from a patient diagnosed with schizophrenia and comorbid white matter hyperintensities (SCH+WM), a patient with an identical diagnosis but without structural brain changes present in the MRI (SCH-WM) of a healthy control (HC). The range of gamma waves has been obtained by using analogue filters. In order to obtain precise analysis, gamma frequencies have been divided into three bands: 30-50Hz, 50-70Hz, 70-100Hz. Matching Pursuit algorithm has been used for signal analysis enabling assessing the changes in signal energy. Synchronization effectiveness of particular areas of the brain was measured with the aid of coherence value for selected pairs of electrodes.
Results: The electrophysiological signals recorded for the SCH+WM patient showed the highest signal energy level identified for all the analyzed bands compared to the results obtained for the same pairs of electrodes of the other subjects. Coherence results revealed hipercompensation for the SCH+WM patient and her level differed substantially compared to the results of the other subjects.
Conclusions: The coexistence of schizophrenia with white matter damage can significantly disturb parameters of neural activity with high frequencies. The paper discusses possible explanations for the obtained results.
Collapse
Affiliation(s)
- Kamil Jonak
- Institute of Technological Systems of Information, Lublin University of Technology, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Poland
| | - Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Poland
| |
Collapse
|
90
|
Alpha oscillations and their impairment in affective and post-traumatic stress disorders. Neurosci Biobehav Rev 2016; 68:794-815. [PMID: 27435239 DOI: 10.1016/j.neubiorev.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/26/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
Abstract
Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders.
Collapse
|
91
|
Electrophysiological alterations in a complex rat model of schizophrenia. Behav Brain Res 2016; 307:65-72. [DOI: 10.1016/j.bbr.2016.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022]
|
92
|
Başar E, Gölbaşı BT, Tülay E, Aydın S, Başar-Eroğlu C. Best method for analysis of brain oscillations in healthy subjects and neuropsychiatric diseases. Int J Psychophysiol 2016; 103:22-42. [DOI: 10.1016/j.ijpsycho.2015.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
93
|
Tan D, Özerdem A, Güntekin B, Atagün MI, Tülay E, Karadağ F, Başar E. Increased Beta Frequency (15-30 Hz) Oscillatory Responses in Euthymic Bipolar Patients Under Lithium Monotherapy. Clin EEG Neurosci 2016; 47:87-95. [PMID: 25465436 DOI: 10.1177/1550059414561056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022]
Abstract
The effect of lithium on neurocognition is not still fully explored. Brain oscillatory activity is altered in bipolar disorder. We aimed to assess the oscillatory responses of euthymic bipolar patients and how they are affected by lithium monotherapy. Event-related oscillations in response to visual target stimulus during an oddball paradigm in 16 euthymic drug-free and 13 euthymic lithium-treated bipolar patients were compared with 16 healthy controls. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta (15-30 Hz) responses in the 0- to 300-ms time window over frontal (F3, Fz, F4), central (C3, Cz, C4), temporal (T7, T8), temporo-parietal (TP7, TP8), parietal (P3, Pz, P4), and occipital (O1, Oz, O2) areas. Patients under lithium monotherapy had significantly higher beta responses to visual target stimuli than healthy controls (P=.017) and drug-free patients (P=.015). The increase in beta response was observed at all electrode locations, however, the difference was statistically significant for the left (T7; P=.016) and right (T8; P=.031) temporal beta responses. Increased beta responses in drug-free patients and further significant increase in lithium-treated patients may be indicative of a core pathophysiological process of bipolar disorder and how it is affected by lithium. Whether the finding corresponds to lithium's corrective effect on the underlying pathology or to its neurocognitive side effect remains to be further explored. In either case, the finding is a sign that the oscillatory activity may be useful in tracking medication effect in bipolar disorder.
Collapse
Affiliation(s)
- Devran Tan
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey Department of Neuroscience, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey Multidisciplinary Brain Dynamics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - M Ilhan Atagün
- Department of Psychiatry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Elif Tülay
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Figen Karadağ
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
94
|
Theta response in schizophrenia is indifferent to perceptual illusion. Clin Neurophysiol 2016; 127:419-430. [DOI: 10.1016/j.clinph.2015.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/10/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023]
|
95
|
Cicchese JJ, Berry SD. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction. Front Psychiatry 2016; 7:1. [PMID: 26903886 PMCID: PMC4751249 DOI: 10.3389/fpsyt.2016.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric pathology.
Collapse
Affiliation(s)
- Joseph J Cicchese
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| | - Stephen D Berry
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| |
Collapse
|
96
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Anokhin AP, Bauer LO, Kuperman S, Kramer J, Bucholz KK, Schuckit MA, Hesselbrock VM, Porjesz B. Deficient Event-Related Theta Oscillations in Individuals at Risk for Alcoholism: A Study of Reward Processing and Impulsivity Features. PLoS One 2015; 10:e0142659. [PMID: 26580209 PMCID: PMC4651365 DOI: 10.1371/journal.pone.0142659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. METHODS EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. RESULTS HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. CONCLUSIONS As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders.
Collapse
Affiliation(s)
- Chella Kamarajan
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Ashwini K. Pandey
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - David B. Chorlian
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Niklas Manz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Arthur T. Stimus
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Andrey P. Anokhin
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lance O. Bauer
- University of Connecticut Health Center, Farmington, CT, United States of America
| | | | - John Kramer
- University of Iowa, Iowa City, IA, United States of America
| | - Kathleen K. Bucholz
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marc A. Schuckit
- University of California San Diego, San Diego, CA, United States of America
| | | | - Bernice Porjesz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| |
Collapse
|
97
|
Canali P, Sarasso S, Rosanova M, Casarotto S, Sferrazza-Papa G, Gosseries O, Fecchio M, Massimini M, Mariotti M, Cavallaro R, Smeraldi E, Colombo C, Benedetti F. Shared reduction of oscillatory natural frequencies in bipolar disorder, major depressive disorder and schizophrenia. J Affect Disord 2015; 184:111-5. [PMID: 26074020 DOI: 10.1016/j.jad.2015.05.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent studies have demonstrated that cortical brain areas tend to oscillate at a specific natural frequency when directly perturbed by transcranial magnetic stimulation (TMS). Fast electroencephalographic (EEG) oscillations, which typically originate from frontal regions, have been reported to be markedly reduced in schizophrenia. METHODS Here we employed TMS/EEG to assess the natural frequency of the premotor area in a sample of 48 age-matched participants (12 each in major depression disorder (MDD)), bipolar disorder (BPD), schizophrenia (SCZ) and healthy controls. Event related spectral perturbations (ERSP) were obtained for each study participant using wavelet decomposition. RESULTS TMS resulted in a significant activation of the beta/gamma band response (21-50 Hz) to frontal cortical perturbation in healthy control subjects. By contrast, the main frequencies of frontal EEG responses to TMS were significantly reduced in patients with BPD, MDD and SCZ (11-27 Hz) relative to healthy subjects. CONCLUSIONS Patients with bipolar disorder, major depression and schizophrenia showed a significantly lower natural frequency of frontal cortico-thalamocortical circuits compared to healthy controls. These results suggest a common neurobiological mechanism of corticothalamic impairment. The most likely candidates include dysfunction of GABAergic circuits. LIMITATIONS Further studies are needed to consider other biological markers, gene variants, and their interaction with clinical variables.
Collapse
Affiliation(s)
- Paola Canali
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy.
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy; Fondazione Europea di Ricerca Biomedica, ONLUS Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy
| | - Giovanna Sferrazza-Papa
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liegi, Belgium; Center for Sleep and Consciousness and Postle Laboratory, Department of Psychology and Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Matteo Fecchio
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy
| | - Maurizio Mariotti
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
98
|
Basar-Eroglu C, Mathes B, Khalaidovski K, Brand A, Schmiedt-Fehr C. Altered alpha brain oscillations during multistable perception in schizophrenia. Int J Psychophysiol 2015; 103:118-28. [PMID: 25746892 DOI: 10.1016/j.ijpsycho.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a complex mental disorder with impairments in integrating sensory and cognitive functions, leading to severe problems in coherent perception. This impairment might be accelerated during multistable perception. Multistable perception is a phenomenon, where a visual pattern gives rise to at least two different perceptual representations. We addressed this issue by assessing event-related alpha oscillations during continuous viewing of an ambiguous and unambiguous control stimulus. Perceptual reversals were indicated by a manual response, allowing differentiation between phases of reversion and non-reversion (that is perceptual stability) in both tasks. During the ambiguous task, patients and controls showed a comparable number of perceptual reversals. Alpha amplitudes in patients were larger in non-reversion phases, accompanied by a stronger decrease of alpha activity preceding the perceptual reversal. This group difference was pronounced for lower alpha activity and not apparent during the unambiguous task. This indicates that ambiguous perception taps into the specific deficits that patients experience in maintaining coherent perception. Given that top-down influences in generating a meaningful percept seems to be low in patients, they appear more dependent on sensory information. Similar, bottom-up mechanisms might be more important in triggering perceptual reversals in patients than in controls.
Collapse
Affiliation(s)
- Canan Basar-Eroglu
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany.
| | - Birgit Mathes
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Ksenia Khalaidovski
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Andreas Brand
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| | - Christina Schmiedt-Fehr
- University of Bremen, Institute of Psychology and Cognition Research, Grazer Str.4, D-28359 Bremen, Germany; Centre for Cognitive Science, Bremen, Germany
| |
Collapse
|
99
|
Koch M, Schmiedt-Fehr C, Mathes B. Neuropharmacology of altered brain oscillations in schizophrenia. Int J Psychophysiol 2015; 103:62-8. [PMID: 25681533 DOI: 10.1016/j.ijpsycho.2015.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Impairments in spatial and temporal integration of brain network activity are a core feature of schizophrenia. Neural network oscillatory activity is considered to be fundamentally important in coordinating neural activity throughout the brain. Hence, exploration of brain oscillations has become an indispensible tool to study the neural basis of mental illnesses. However, most of the studies in schizophrenia include medicated patients. This implicates the question to what extent are changes in the electrophysiological parameters genuine illness effects, genuine drug effects or a mixture of both. We here provide a short overview of the neuropharmacology of brain oscillations with respect to schizophrenia. The core assumption of the so-called "pharmaco-EEG" approach is that drug effects on mental and cognitive functions are reflected in changes in quantitative EEG parameters. Hence, clinical efficacy of drugs might be predicted on the basis of the neuropharmacology of electrophysiological measures, such as brain oscillations. Vice versa, knowledge of drug effects on brain oscillations can be of essence in understanding schizophrenia. However, the current literature lacks systematic findings, because of at least two problems. First, the pharmacology of most antipsychotic drugs is complex including interactions with several transmitter receptors. Second, the neuropathology of schizophrenia still has no pathognomonic signature. Even though it is presently not possible to clearly dissociate drug- and illness effects in neural oscillations, this review emphasizes future studies to foster the understanding of this relationship in schizophrenia and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Koch
- Brain Research Institute, Dept. of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Christina Schmiedt-Fehr
- Institute of Psychology and Cognition Research, University of Bremen, Grazerstr. 4, 28359 Bremen, Germany
| | - Birgit Mathes
- Institute of Psychology and Cognition Research, University of Bremen, Grazerstr. 4, 28359 Bremen, Germany
| |
Collapse
|
100
|
Kamarajan C, Porjesz B. Advances in Electrophysiological Research. Alcohol Res 2015; 37:53-87. [PMID: 26259089 PMCID: PMC4476604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders.These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|