51
|
Li B, Du L, Yu Z, Sun B, Xu X, Fan B, Guo R, Yuan W, He K. Poly (d,l-lactide-co-glycolide) nanoparticle-entrapped vaccine induces a protective immune response against porcine epidemic diarrhea virus infection in piglets. Vaccine 2017; 35:7010-7017. [PMID: 29102169 DOI: 10.1016/j.vaccine.2017.10.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023]
Abstract
Porcine epidemic diarrhea (PED) causes 80-100% mortality in neonatal piglets, and its causative agent, the porcine epidemic diarrhea virus (PEDV), poses an important threat to the swine industry worldwide. In this study, we prepared biodegradable poly (d,l-lactide-co-glycolide) (PLGA) nanoparticle-entrapped PEDV killed vaccine antigens (KAg) (PLGA-KAg). Late-term pregnant sows were intranasally inoculated with PLGA-KAg, and the mortality resulting from challenge with highly virulent PEDV was investigated in their passively immunized suckling piglets. PEDV-specific IgG and IgA antibody titers were enhanced in pregnant sows immunized with PLGA-KAg relative to the titers in sows inoculated with KAg. Similar results were seen in the passively immunized suckling piglets of these sows. Improved lymphocyte proliferation responses and IFN-γ levels were induced in pregnant sows immunized with PLGA-KAg compared with those vaccinated with KAg or with Montanide™ ISA 201 VG emulsified killed PEDV vaccine (201-KAg). Importantly, there was less piglet mortality in the group vaccinated with PLGA-KAg than in the groups vaccinated with KAg or 201-KAg. These results demonstrate that PLGA-KAg is a promising candidate vaccine that can provide protective immunity against PEDV infection in suckling piglets.
Collapse
Affiliation(s)
- Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China.
| | - Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Bing Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Xiangwei Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Wanzhe Yuan
- College of Animal Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
52
|
Le VP, Song S, An BH, Park GN, Pham NT, Le DQ, Nguyen VT, Vu TTH, Kim KS, Choe S, An DJ. A novel strain of porcine deltacoronavirus in Vietnam. Arch Virol 2017; 163:203-207. [PMID: 29022111 PMCID: PMC7087264 DOI: 10.1007/s00705-017-3594-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/20/2017] [Indexed: 11/29/2022]
Abstract
Two porcine deltacoronavirus (PDCoV) strains (Binh21 and HaNoi6) were isolated from two pig farms in North Vietnam. Phylogenetic analysis of the complete genomes and the Spike and Membrane genes revealed that the two Vietnam PDCoVs belong to the same lineage as PDCoVs from Thailand and Laos; however, the N genes belonged to the same lineage as PDCoVs from the USA, Korea, China, and Hong Kong. The recombination detection program subsequently identified the major parent (S5011 strain) and minor parent (HKU15-44 strain) of the two Vietnam PDCoV strains (p < 0.01).
Collapse
Affiliation(s)
- Van Phan Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Byung-Hyun An
- Applied Chemistry and Biological Engineering, Ajou University, Suwon, 443-749, Republic of Korea
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Ngoc Thach Pham
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Dinh Quyen Le
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Van Tam Nguyen
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Thi Thu Hang Vu
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea.
| |
Collapse
|
53
|
Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet Microbiol 2017; 211:15-21. [PMID: 29102111 PMCID: PMC7117260 DOI: 10.1016/j.vetmic.2017.09.020] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
Abstract
A novel swine enteric alphacoronavirus (tentatively named SeACoV) was isolated from diarrheic piglets in southern China. SeACoV is likely antigenetically distinct from PEDV, TGEV and PDCoV. Genomic and phylogenetic analysis showed that SeACoV might have originated from the bat coronavirus HKU2. The extreme amino-terminal domain of SeACoV spike glycoprotein had an extremely high variability compared to that of HKU2. Experimental infection study showed that SeACoV is infectious and pathogenic in newborn piglets.
Outbreaks of diarrhea in newborn piglets without detection of transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), have been recorded in a pig farm in southern China since February 2017. Isolation and propagation of the pathogen in cell culture resulted in discovery of a novel swine enteric alphacoronavirus (tentatively named SeACoV) related to the bat coronavirus HKU2 identified in the same region a decade ago. Specific fluorescence signal was detected in Vero cells infected with SeACoV by using a positive sow serum collected in the same farm, but not by using TGEV-, PEDV- or PDCoV-specific antibody. Electron microscopy observation demonstrated that the virus particle with surface projections was 100–120 nm in diameter. Complete genomic sequencing and analyses of SeACoV indicated that the extreme amino-terminal domain of the SeACoV spike (S) glycoprotein structurally similar to the domain 0 of the alphacoronavirus NL63, whereas the rest part of S structurally resembles domains B to D of the betacoronavirus. The SeACoV-S domain 0 associated with enteric tropism had an extremely high variability, harboring 75-amino-acid (aa) substitutions and a 2-aa insertion, compared to that of HKU2, which is likely responsible for the extended host range or cross-species transmission. The isolated virus was infectious in pigs when inoculated orally into 3-day-old newborn piglets, leading to clinical signs of diarrhea and fecal virus shedding. These results confirmed that it is a novel swine enteric coronavirus representing the fifth porcine coronavirus.
Collapse
|
54
|
Zhang X, Zhu Y, Zhu X, Shi H, Chen J, Shi D, Yuan J, Cao L, Liu J, Dong H, Jing Z, Zhang J, Wang X, Feng L. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerg Microbes Infect 2017; 6:e74. [PMID: 28831195 PMCID: PMC5583670 DOI: 10.1038/emi.2017.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 12/31/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is an infective coronavirus (CoV) that causes diarrhea-related morbidity and mortality in piglets. For the first time, a natural recombination strain of a TGEV Anhui Hefei (AHHF) virus between the Purdue and the Miller clusters was isolated from the small intestine content of piglets in China. A phylogenetic tree based on a complete genome sequence placed the TGEV AHHF strain between the Purdue and the Miller clusters. The results of a computational analysis of recombination showed that the TGEV AHHF strain is a natural recombinant strain between these clusters. Two breakpoints located in the open reading frame 1a (ORF1a) and spike (S) genes were identified. The pathogenicity of the TGEV AHHF strain was evaluated in piglets, and the results show that TGEV AHHF is an enteric pathogenic strain. These results provide valuable information about the recombination and evolution of CoVs and will facilitate future investigations of the molecular pathogenesis of TGEV.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunnuan Zhu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangdong Zhu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Yuan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hui Dong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China.,Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Liège 5030, Belgium
| | - Zhaoyang Jing
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jialin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaobo Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
55
|
Diep NV, Sueyoshi M, Izzati U, Fuke N, Teh APP, Lan NT, Yamaguchi R. Appearance of US-like porcine epidemic diarrhoea virus (PEDV) strains before US outbreaks and genetic heterogeneity of PEDVs collected in Northern Vietnam during 2012-2015. Transbound Emerg Dis 2017; 65:e83-e93. [PMID: 28758349 PMCID: PMC7169849 DOI: 10.1111/tbed.12681] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is the aetiologic agent of porcine epidemic diarrhoea (PED), a highly contagious enteric disease that is threatening the swine industry globally. Since PED was first reported in Southern Vietnam in 2009, the disease has spread throughout the country and caused substantial economic losses. To identify PEDVs responsible for the recent outbreaks, the full-length spike (S) gene of 25 field PEDV strains collected from seven northern provinces of Vietnam was sequenced and analysed. The sequence analysis revealed that the S genes of Vietnamese PEDVs were heterogeneous and classified into four genotypes, namely North America and Asian non-S INDEL, Asian non-S INDEL, new S INDEL and classical S INDEL. This study reported the pre-existence of US-like PEDV strains in Vietnam. Thirteen Vietnamese variants had a truncated S protein that was 261 amino acids shorter than the normal protein. We also detected one novel variant with an 8-amino acid insertion located in the receptor-binding region for porcine aminopeptidase N. Compared to the commercial vaccine strains, the emerging Vietnamese strains were genetically distant and had various amino acid differences in epitope regions and N-glycosylation sites in the S protein. The development of novel vaccines based on the emerging Vietnamese strains may be contributive to the control of the current PED outbreaks.
Collapse
Affiliation(s)
- N V Diep
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - M Sueyoshi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - U Izzati
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - N Fuke
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - A P P Teh
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - N T Lan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - R Yamaguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
56
|
Zeng Z, Li TT, Jin X, Peng FH, Song NH, Peng GQ, Ge XY. Coexistence of multiple genotypes of porcine epidemic diarrhea virus with novel mutant S genes in the Hubei Province of China in 2016. Virol Sin 2017; 32:298-306. [PMID: 28755162 PMCID: PMC6599178 DOI: 10.1007/s12250-017-4021-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
The emergence of highly virulent porcine epidemic diarrhea virus (PEDV) variants in China caused huge economic losses in 2010. Since then, large-scale sporadic outbreaks of PED caused by PEDV variants have occasionally occurred in China. However, the molecular diversity and epidemiology of PEDV in different provinces has not been completely understood. To determine the molecular diversity of PEDV in the Hubei Province of China, we collected 172 PED samples from 34 farms across the province in 2016 and performed reverse transcription polymerase chain reaction (RT-PCR) by targeting the nucleocapsid (N) gene. Seventy-four samples were found to be PEDV-positive. We further characterized the complete spike (S) glycoprotein genes from the positive samples and found 21 different S genes with amino acid mutations. The PEDV isolates here presented most of the genotypes which were found previously in field isolates in East and South-East Asia, North America, and Europe. Besides the typical Genotypes I and II, the INDEX groups were also found. Importantly, 58 new amino acids mutant sites in the S genes, including 44 sites in S1 and 14 sites in S2, were first described. Our results revealed that the S genes of PEDV showed variation and that diverse genotypes of PEDV coexisted and were responsible for the PED outbreaks in Hubei in 2016. This work highlighted the complexity of the epidemiology of PEDV and emphasized the need for reassessing the efficacy of classic PEDV vaccines against emerging variant strains and developing new vaccines to facilitate the prevention and control of PEDV in fields.
Collapse
Affiliation(s)
- Zhe Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting-Ting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Xin Jin
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Fu-Hu Peng
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Nian-Hua Song
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Gui-Qing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xing-Yi Ge
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
57
|
Mai K, Feng J, Chen G, Li D, Zhou L, Bai Y, Wu Q, Ma J. The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China. Transbound Emerg Dis 2017; 65:166-173. [PMID: 28345292 PMCID: PMC7169752 DOI: 10.1111/tbed.12644] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 11/29/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly discovered coronavirus that causes diarrhoea, vomiting and dehydration in sucking and nursing piglets. It was first reported in Hong Kong in 2012 and has since been discovered in the United States, Canada, South Korea, mainland China, Thailand and Laos. PDCoV has been experimentally proved to lead to diarrhoea in swine and it was detected positive in pigs in Guangdong, southern China. In our study, 252 faecal and intestinal samples from sucking piglets and sows with diarrhoea were surveyed for common enteric viruses. We found a prevalence of PDCoV (21.8%), porcine epidemic diarrhoea virus (65.5%), transmissible gastroenteritis virus (0%), rotavirus group A (25.0%) and porcine kobuvirus (68.7%). We isolated 13 PDCoV strains and discovered that PDCoV infections were often co‐infections with kobuvirus rather than the commonly linked porcine epidemic diarrhoea virus. Phylogenetic analysis of S gene and N gene revealed that 11 of 13 PDCoV strains belonged to Chinese lineage. As for the left two strains, one single strain (CHN‐GD16‐05) belonged to American and Korean lineages while another strain (CHN‐GD16‐03) was similar to a Thai strain, but only in the S gene. This suggested a possible recombination event between the Thai and the newly described Chinese strain.
Collapse
Affiliation(s)
- K Mai
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - J Feng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - G Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - D Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - L Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Bai
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Q Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - J Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
58
|
Greer AL, Spence K, Gardner E. Understanding the early dynamics of the 2014 porcine epidemic diarrhea virus (PEDV) outbreak in Ontario using the incidence decay and exponential adjustment (IDEA) model. BMC Vet Res 2017; 13:8. [PMID: 28056953 PMCID: PMC5217418 DOI: 10.1186/s12917-016-0922-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The United States swine industry was first confronted with porcine epidemic diarrhea virus (PEDV) in 2013. In young pigs, the virus is highly pathogenic and the associated morbidity and mortality has a significant negative impact on the swine industry. We have applied the IDEA model to better understand the 2014 PEDV outbreak in Ontario, Canada. Using our simple, 2-parameter IDEA model, we have evaluated the early epidemic dynamics of PEDV on Ontario swine farms. RESULTS We estimated the best-fit R0 and control parameter (d) for the between farm transmission component of the outbreak by fitting the model to publically available cumulative incidence data. We used maximum likelihood to compare model fit estimates for different combinations of the R0 and d parameters. Using our initial findings from the iterative fitting procedure, we projected the time course of the epidemic using only a subset of the early epidemic data. The IDEA model projections showed excellent agreement with the observed data based on a 7-day generation time estimate. The best-fit estimate for R0 was 1.87 (95% CI: 1.52 - 2.34) and for the control parameter (d) was 0.059 (95% CI: 0.022 - 0.117). Using data from the first three generations of the outbreak, our iterative fitting procedure suggests that R0 and d had stabilized sufficiently to project the time course of the outbreak with reasonable accuracy. CONCLUSIONS The emergence and spread of PEDV represents an important agricultural emergency. The virus presents a significant ongoing threat to the Canadian swine industry. Developing an understanding of the important epidemiological characteristics and disease transmission dynamics of a novel pathogen such as PEDV is critical for helping to guide the implementation of effective, efficient, and economically feasible disease control and prevention strategies that are able to help decrease the impact of an outbreak.
Collapse
Affiliation(s)
- Amy L Greer
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Kelsey Spence
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Emma Gardner
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
59
|
Choudhury B, Dastjerdi A, Doyle N, Frossard JP, Steinbach F. From the field to the lab - An European view on the global spread of PEDV. Virus Res 2016; 226:40-49. [PMID: 27637348 PMCID: PMC7114520 DOI: 10.1016/j.virusres.2016.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a member of the genus Alphacoronavirus, in the family Coronaviridae, of the Nidovirales order and outbreaks of porcine epidemic diarrhoea (PED) were first recorded in England in the 1970s. Intriguingly the virus has since successfully made its way around the globe, while seemingly becoming extinct in parts of Europe before its recent return from Northern America. In this review we are re-evaluating the spread of PEDV, its biology and are looking at lessons learnt from both failure and success. While a new analysis of PEDV genomes demonstrates a wider heterogeneity of PEDV than previously anticipated with at least five rather than two genotypes, biological features of the virus and its replication also point towards credible control strategies to limit the impact of this re-emerging virus.
Collapse
Affiliation(s)
- Bhudipa Choudhury
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Akbar Dastjerdi
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Nicole Doyle
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Jean-Pierre Frossard
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| |
Collapse
|
60
|
Abstract
Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by Porcine epidemic diarrhea virus (PEDV) that characterized by vomiting, diarrhea, and dehydration. PEDV was first identified in the 1980s in China, and since then, it has become one of the most common viral causes of diarrhea. In October 2010, a large-scale outbreak of PED caused by a PEDV variant occurred in China, resulting in tremendous economic losses. This review presents a comprehensive description of PEDV history, prevalence, molecular features, and prevention and control strategies in China.
Collapse
Affiliation(s)
- Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
61
|
Zhai SL, Wei WK, Li XP, Wen XH, Zhou X, Zhang H, Lv DH, Li F, Wang D. Occurrence and sequence analysis of porcine deltacoronaviruses in southern China. Virol J 2016; 13:136. [PMID: 27496131 PMCID: PMC4974758 DOI: 10.1186/s12985-016-0591-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background Following the initial isolation of porcine deltacoronavirus (PDCoV) from pigs with diarrheal disease in the United States in 2014, the virus has been detected on swine farms in some provinces of China. To date, little is known about the molecular epidemiology of PDCoV in southern China where major swine production is operated. Results To investigate the prevalence of PDCoV in this region and compare its activity to other enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis coronavirus (TGEV), and porcine rotavirus group C (Rota C), 390 fecal samples were collected from swine of various ages from 15 swine farms with reported diarrhea. Fecal samples were tested by reverse transcription-PCR (RT-PCR) that targeted PDCoV, PEDV, TGEV, and Rota C, respectively. PDCoV was detected exclusively from nursing piglets with an overall prevalence of approximate 1.28 % (5/390), not in suckling and fattening piglets. Interestingly, all of PDCoV-positive samples were from 2015 rather than 2012–2014. Despite a low detection rate, PDCoV emerged in each province/region of southern China. In addition, compared to TGEV (1.54 %, 5/390) or Rota C (1.28 %, 6/390), there were highly detection rates of PEDV (22.6 %, 88/390) in those samples. Notably, all five PDCoV-positive piglets were co-infected by PEDV. Furthermore, phylogenetic analysis of spike (S) and nucleocapsid (N) gene sequences of PDCoVs revealed that currently circulating PDCoVs in southern China were more closely related to other Chinese strains of PDCoVs than to those reported in United States, South Korea and Thailand. Conclusions This study demonstrated that PDCoV was present in southern China despite the low prevalence, and supported an evolutionary theory of geographical clustering of PDCoVs. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0591-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Wen-Kang Wei
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xiao-Peng Li
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xiao-Hui Wen
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xia Zhou
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - He Zhang
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Dian-Hong Lv
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
62
|
Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number-qPCR Assay. Appl Environ Microbiol 2016; 82:4743-4756. [PMID: 27235434 PMCID: PMC4984289 DOI: 10.1128/aem.00077-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/23/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)-quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053-1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari Campylobacters in raw sewage were present at ∼10(2)/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment.
Collapse
|
63
|
Chung HC, Lee JH, Nguyen VG, Huynh TML, Lee GE, Moon HJ, Park SJ, Kim HK, Park BK. New emergence pattern with variant porcine epidemic diarrhea viruses, South Korea, 2012-2015. Virus Res 2016; 226:14-19. [PMID: 27345861 PMCID: PMC7114525 DOI: 10.1016/j.virusres.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
Abstract
By the application of Bayesian phylogeographical analysis, this study demonstrated the spatial- temporal transmission of PEDVs within Korea. Of the recent emerged G2a viruses, J3142 strains showed potential recombination breakpoint (376–2,143nt) of S1 gene between KNU1303_Korea strain_G2a (KJ451046) and 45RWVCF0712_Thailand strain_G2b (KF724935). The pandemic G2a virus was partial neutralized by the antibodies invoked by the G1- based PED vaccine virus.
Since outbreaks of porcine epidemic diarrhea virus (PEDV) in the United States in 2013, explosive outbreaks of PED in South Korea have infected all age groups of pigs in 2014–2015 year. This study analyzed a large collection of the Spike protein coding gene to infer the spatial-temporal diffusion history of PEDV. The studying results suggested that PEDVs in Korea belonged to different genogroups. While classical G1 was continuingly circulating between provinces of Korea, the pandemic G2a were recently introduced from China and USA. By the application of Bayesian phylogeographical analysis, this study demonstrated the spatial-temporal transmission of PEDVs within Korea. Of the recent emerged G2a viruses, J3142 strains showed potential recombination breakpoint (376–2,143nt) of S1 gene between KNU1303_Korea strain_G2a (KJ451046) and 45RWVCF0712_Thailand strain_G2b (KF724935). The pandemic G2a virus was partial neutralized by the antibodies invoked by the G1- based PED vaccine virus.
Collapse
Affiliation(s)
- Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Jee-Hoon Lee
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ga-Eun Lee
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea
| | - Hyoung-Joon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea
| | - Seong-Jun Park
- Forensic Medicine Division, Daegu Institute, National Forensic Service, Chilgok 718-803, Republic of Korea
| | - Hye-Kwon Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Bong Kyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, DaeHakRo 1, GwanAk-Gu, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
64
|
Lin CM, Saif LJ, Marthaler D, Wang Q. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Res 2016; 226:20-39. [PMID: 27288724 PMCID: PMC7111424 DOI: 10.1016/j.virusres.2016.05.023] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 12/16/2022]
Abstract
Evolution of global PEDV strains. Cross-reactivity between PEDV and other coronaviruses and antigenic variations among different PEDV strains. Pathologic features of different PEDV strains. Considerations for vaccine strain selection: PEDV virulence attenuation and in vivo cross-protection among PEDV variants.
Emerging and re-emerging coronaviruses cause morbidity and mortality in human and animal populations, resulting in serious public and animal health threats and economic losses. The ongoing outbreak of a highly contagious and deadly porcine epidemic diarrhea virus (PEDV) in Asia, the Americas and Europe is one example. Genomic sequence analyses of PEDV variants have revealed important insights into the evolution of PEDV. However, the antigenic variations among different PEDV strains are less explored, although they may contribute to the failure of PEDV vaccines in Asian countries. In addition, the evolution of PEDV results in variants with distinct genetic features and virulence differences; thus PEDV can serve as a model to explore the molecular mechanisms of coronavirus evolution and pathogenesis. In this article, we review the evolution, antigenic relationships and pathologic features of PEDV strains. This information and review of researches will aid in the development of strategies for control and prevention of PED.
Collapse
Affiliation(s)
- Chun-Ming Lin
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Douglas Marthaler
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
65
|
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016; 24:490-502. [PMID: 27012512 DOI: 10.1016/j.tim.2016.03.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 05/24/2023]
Abstract
Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans.
Collapse
Affiliation(s)
- Shuo Su
- Engineering Laboratory of Animal Immunity of Jiangsu Province, Institute of immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Taian, China
| | - Jun Liu
- CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | | | - Jiyong Zhou
- Engineering Laboratory of Animal Immunity of Jiangsu Province, Institute of immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Zhejiang University, Hangzhou, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
66
|
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016; 24:490-502. [PMID: 27012512 PMCID: PMC7125511 DOI: 10.1016/j.tim.2016.03.003] [Citation(s) in RCA: 1865] [Impact Index Per Article: 207.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans.
Collapse
Affiliation(s)
- Shuo Su
- Engineering Laboratory of Animal Immunity of Jiangsu Province, Institute of immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Taian, China
| | - Jun Liu
- CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | | | - Jiyong Zhou
- Engineering Laboratory of Animal Immunity of Jiangsu Province, Institute of immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Zhejiang University, Hangzhou, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
67
|
Comparative Detection and Quantification of Arcobacter butzleri in Stools from Diarrheic and Nondiarrheic People in Southwestern Alberta, Canada. J Clin Microbiol 2016; 54:1082-8. [PMID: 26865686 DOI: 10.1128/jcm.03202-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 01/18/2023] Open
Abstract
Arcobacter butzleri has been linked to enteric disease in humans, but its pathogenicity and epidemiology remain poorly understood. The lack of suitable detection methods is a major limitation. Using comparative genome analysis, we developed PCR primers for direct detection and quantification ofA. butzleri DNA in microbiologically complex matrices. These primers, along with existing molecular and culture-based methods, were used to detectA. butzleri and enteric pathogens in stools of diarrheic and nondiarrheic people (n= 1,596) living in southwestern Alberta, Canada, from May to November 2008. In addition, quantitative PCR was used to compare A. butzleridensities in diarrheic and nondiarrheic stools.Arcobacter butzleriwas detected more often by PCR (59.6%) than by isolation methods (0.8%). Comparison by PCR-based detection found no difference in the prevalence ofA. butzleri between diarrheic (56.7%) and nondiarrheic (45.5%) individuals. Rates of detection in diarrheic stools peaked in June (71.1%) and October (68.7%), but there was no statistically significant correlation between the presence ofA. butzleri and patient age, sex, or place of habitation. Densities ofA. butzleriDNA in diarrheic stools (1.6 ± 0.59 log10 copies mg(-1)) were higher (P= 0.007) than in nondiarrheic stools (1.3 ± 0.63 log10copies mg(-1)). Of the 892 diarrheic samples that were positive for A. butzleri, 74.1% were not positive for other bacterial and/or viral pathogens. The current study supports previous work suggesting that A. butzleri pathogenicity is strain specific and/or dependent on other factors, such as the level of host resistance.
Collapse
|
68
|
Van den Abeele AM, Vogelaers D, Vanlaere E, Houf K. Antimicrobial susceptibility testing ofArcobacter butzleriandArcobacter cryaerophilusstrains isolated from Belgian patients. J Antimicrob Chemother 2016; 71:1241-4. [DOI: 10.1093/jac/dkv483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/17/2015] [Indexed: 11/13/2022] Open
|
69
|
Abstract
Porcine epidemic diarrhoea (PED) is a non-zoonotic viral disease of pigs caused by a coronavirus and characterised by watery diarrhoea and weight loss. PED is not notifiable to the EU or World Organisation for Animal Health listed but it is notifiable at the national level in Finland, France, Ireland and Sweden. PED case reports from seven countries and PED surveillance and monitoring activities in thirteen countries were reported. This information was combined with an extensive literature review to provide an update on global PED occurrence, circulating strains and impact in 2014-2015. PED confirmed cases have been reported in North America, South America, Asia and Europe. PED virus (PEDV) sequences originating from EU pig herds indicate that the strains currently in circulation share nearly 100% sequence identity and have greater than 99% sequence identity with the reference INDEL (insertion/deletion) strain USA/OH851/2014. In 2014-2015, greater genetic variability has been reported in strains circulating in Asia compared with EU Member States and a non-INDEL strain has been detected in the Ukraine in 2014. Data on impact confirms that mortality is higher in suckling piglets and diarrhoea is observed in all age groups. The reported impact is in agreement with that reported in EFSA AHAW Panel (2014) indicating that the impact of recently reported PED outbreaks in Asia and the USA seems to be more severe than that described in EU countries, although the impact of different PEDV strains is difficult to compare between one country and another, as impact is dependent not only on pathogenicity but also on factors such as biosecurity, herd size, farm management, sanitary status or herd immune status.
Collapse
|
70
|
Yamamoto T, Suzuki T, Ohashi S, Miyazaki A, Tsutsui T. Genomic Motifs as a Novel Indicator of the Relationship between Strains Isolated from the Epidemic of Porcine Epidemic Diarrhea in 2013-2014. PLoS One 2016; 11:e0147994. [PMID: 26808527 PMCID: PMC4726493 DOI: 10.1371/journal.pone.0147994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/10/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a positive-sense RNA virus that causes infectious gastroenteritis in pigs. Following a PED outbreak that occurred in China in 2010, the disease was identified for the first time in the United States in April 2013, and was reported in many other countries worldwide from 2013 to 2014. As a novel approach to elucidate the epidemiological relationship between PEDV strains, we explored their genome sequences to identify the motifs that were shared within related strains. Of PED outbreaks reported in many countries during 2013–2014, 119 PEDV strains in Japan, USA, Canada, Mexico, Germany, and Korea were selected and used in this study. We developed a motif mining program, which aimed to identify a specific region of the genome that was exclusively shared by a group of PEDV strains. Eight motifs were identified (M1–M8) and they were observed in 41, 9, 18, 6, 10, 14, 2, and 2 strains, respectively. Motifs M1–M6 were shared by strains from more than two countries, and seemed to originate from one PEDV strain, Indiana12.83/USA/2013, among the 119 strains studied. BLAST search for motifs M1–M6 revealed that M3–M5 were almost identical to the strain ZMDZY identified in 2011 in China, while M1 and M2 were similar to other Chinese strains isolated in 2011–2012. Consequently, the PED outbreaks in these six countries may be closely related, and multiple transmissions of PEDV strains between these countries may have occurred during 2013–2014. Although tools such as phylogenetic tree analysis with whole genome sequences are increasingly applied to reveal the connection between isolates, its interpretation is sometimes inconclusive. Application of motifs as a tool to examine the whole genome sequences of causative agents will be more objective and will be an explicit indicator of their relationship.
Collapse
Affiliation(s)
- Takehisa Yamamoto
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
- * E-mail:
| | - Tohru Suzuki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Seiichi Ohashi
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Ayako Miyazaki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Toshiyuki Tsutsui
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| |
Collapse
|
71
|
Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China. Virus Genes 2016; 52:91-8. [PMID: 26743534 PMCID: PMC7089116 DOI: 10.1007/s11262-015-1254-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused devastating impact on pig-rearing industry in China and current vaccine is not effective against the circulating PEDV variants. In the present study, the full-length genome sequence from a PEDV isolate (CH/HNQX-3/14) was determined. The complete genome sequence analysis showed that the CH/HNQX-3/14 possessed unique deletion regions in the S and ORF3 genes. It was identified as a recombinant strain using phylogenetic analysis and recombination detection program. Further analyses of the full-length sequence suggest that CH/HNQX-3/14 is a natural recombinant between the attenuated vaccine strains (CV777 and DR13) and circulating wild-type strain (CH/ZMDZY/11). The recombination occurred not only in structural protein-coding region (S1 and N genes) but also in non-structural protein-coding region (replicases 1a and ORF3 genes). These results provided new evidence that PEDV strains circulating in China underwent recombination between vaccine and field strains, suggesting that recombination contributes to the genetic diversity of PEDV. Our findings provide valuable information on PEDV evolution and underscore the need for ongoing surveillance of this economically important swine disease.
Collapse
|
72
|
Lee C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol J 2015; 12:193. [PMID: 26689811 PMCID: PMC4687282 DOI: 10.1186/s12985-015-0421-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
The enteric disease of swine recognized in the early 1970s in Europe was initially described as “epidemic viral diarrhea” and is now termed “porcine epidemic diarrhea (PED)”. The coronavirus referred to as PED virus (PEDV) was determined to be the etiologic agent of this disease in the late 1970s. Since then the disease has been reported in Europe and Asia, but the most severe outbreaks have occurred predominantly in Asian swine-producing countries. Most recently, PED first emerged in early 2013 in the United States that caused high morbidity and mortality associated with PED, remarkably affecting US pig production, and spread further to Canada and Mexico. Soon thereafter, large-scale PED epidemics recurred through the pork industry in South Korea, Japan, and Taiwan. These recent outbreaks and global re-emergence of PED require urgent attention and deeper understanding of PEDV biology and pathogenic mechanisms. This paper highlights the current knowledge of molecular epidemiology, diagnosis, and pathogenesis of PEDV, as well as prevention and control measures against PEDV infection. More information about the virus and the disease is still necessary for the development of effective vaccines and control strategies. It is hoped that this review will stimulate further basic and applied studies and encourage collaboration among producers, researchers, and swine veterinarians to provide answers that improve our understanding of PEDV and PED in an effort to eliminate this economically significant viral disease, which emerged or re-emerged worldwide.
Collapse
Affiliation(s)
- Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
73
|
Ito M, Tsuchiaka S, Naoi Y, Otomaru K, Sato M, Masuda T, Haga K, Oka T, Yamasato H, Omatsu T, Sugimura S, Aoki H, Furuya T, Katayama Y, Oba M, Shirai J, Katayama K, Mizutani T, Nagai M. Whole genome analysis of Japanese bovine toroviruses reveals natural recombination between porcine and bovine toroviruses. INFECTION GENETICS AND EVOLUTION 2015; 38:90-95. [PMID: 26708248 PMCID: PMC7185535 DOI: 10.1016/j.meegid.2015.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 01/03/2023]
Abstract
Bovine toroviruses (BToVs), belong to the subfamily Toroviridae within the family Coronaviridae, and are pathogens, causing enteric disease in cattle. In Japan, BToVs are distributed throughout the country and cause gastrointestinal infection of calves and cows. In the present study, complete genome sequences of two Japanese BToVs and partial genome sequences of two Japanese BToVs and one porcine torovirus (PToV) from distant regions in Japan were determined and genetic analyses were performed. Pairwise nucleotide comparison and phylogenetic analyses revealed that Japanese BToVs shared high identity with each other and showed high similarities with BToV Breda1 strain in S, M, and HE coding regions. Japanese BToVs showed high similarities with porcine toroviruses in ORF1a, ORF1b, and N coding regions and the 5′ and 3′ untranslated regions, suggestive of a natural recombination event. Recombination analyses mapped the putative recombinant breakpoints to the 3′ ends of the ORF1b and HE regions. These findings suggest that the interspecies recombinant nature of Japanese BToVs resulted in a closer relationship between BToV Breda1 and PToVs. Recombination events between porcine and bovine torovirus were identified. Recombinant breakpoints were mapped at ORF1b and HE coding regions. These recombinant viruses are prevalent throughout Japan.
Collapse
Affiliation(s)
- Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Saida, Kanazawa, Ishikawa 920-3101, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Mitsuo Sato
- Tochigi Prefectural Central District Animal Hygiene Service Center, Hiraidekougyoudanchi, Utsunomiya, Tochigi 321-0905, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kiyotani, Kurayoshi, Tottori 683-0017, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kiyotani, Kurayoshi, Tottori 683-0017, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Satoshi Sugimura
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
74
|
Sung MH, Deng MC, Chung YH, Huang YL, Chang CY, Lan YC, Chou HL, Chao DY. Evolutionary characterization of the emerging porcine epidemic diarrhea virus worldwide and 2014 epidemic in Taiwan. INFECTION GENETICS AND EVOLUTION 2015; 36:108-115. [PMID: 26375730 PMCID: PMC7106162 DOI: 10.1016/j.meegid.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 11/16/2022]
Abstract
Since 2010, a new variant of PEDV belonging to Genogroup 2 has been transmitting in China and further spreading to the Unites States and other Asian countries including Taiwan. In order to characterize in detail the temporal and geographic relationships among PEDV strains, the present study systematically evaluated the evolutionary patterns and phylogenetic resolution in each gene of the whole PEDV genome in order to determine which regions provided the maximal interpretative power. The result was further applied to identify the origin of PEDV that caused the 2014 epidemic in Taiwan. Thirty-four full genome sequences were downloaded from GenBank and divided into three non-mutually exclusive groups, namely, worldwide, Genogroup 2 and China, to cover different ranges of secular and spatial trends. Each dataset was then divided into different alignments by different genes for likelihood mapping and phylogenetic analysis. Our study suggested that both nsp3 and S genes contained the highest phylogenetic signal with substitution rate and phylogenetic topology similar to those obtained from the complete genome. Furthermore, the proportion of nodes with high posterior support (posterior probability > 0.8) was similar between nsp3 and S genes. The nsp3 gene sequences from three clinical samples of swine with PEDV infections were aligned with other strains available from GenBank and the results suggested that the virus responsible for the 2014 PEDV outbreak in Taiwan clustered together with Clade I from the US within Genogroup 2. In conclusion, the current study identified the nsp3 gene as an alternative marker for a rapid and unequivocal classification of the circulating PEDV strains which provides complementary information to the S gene in identifying the emergence of epidemic strain resulting from recombination. Both nsp3 and S genes revealed the phylogeny similar to those obtained from the complete genome. Nsp3 gene could assist to identify the emergence of epidemic strain resulting from recombination. The sequences from the 2014 PEDV outbreak in Taiwan clustered with Clade I viral sequences from the US within Genogroup 2.
Collapse
Affiliation(s)
- Ming-Hua Sung
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Taichung City Animal Protection and Health Inspection Office, Taichung 408, Taiwan
| | - Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Yi-Hsuan Chung
- Taichung City Animal Protection and Health Inspection Office, Taichung 408, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Chia-Yi Chang
- Animal Health Research Institute, Council of Agriculture, New Taipei City 25158, Taiwan
| | - Yu-Ching Lan
- Department of Health Risk Management, School of Public Health, China Medical University, Taichung, Taiwan
| | - Hsin-Lin Chou
- Department of Health Risk Management, School of Public Health, China Medical University, Taichung, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
75
|
Middle East Respiratory Syndrome Coronavirus Recombination and the Evolution of Science and Public Health in China. mBio 2015; 6:e01381-15. [PMID: 26350973 PMCID: PMC4600119 DOI: 10.1128/mbio.01381-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
76
|
Galliher-Beckley A, Li X, Bates JT, Madera R, Waters A, Nietfeld J, Henningson J, He D, Feng W, Chen R, Shi J. Pigs immunized with Chinese highly pathogenic PRRS virus modified live vaccine are protected from challenge with North American PRRSV strain NADC-20. Vaccine 2015; 33:3518-25. [PMID: 26049004 DOI: 10.1016/j.vaccine.2015.05.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
Abstract
Modified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20.
Collapse
Affiliation(s)
- Amy Galliher-Beckley
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Xiangdong Li
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - John T Bates
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Rachel Madera
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Andrew Waters
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dongsheng He
- State Key Laboratory of Biotechnology and Bio-products Development for Animal Epidemic Prevention, South China Agricultural University, Guangzhou, China
| | - Wenhai Feng
- State Key Laboratory of Agro-biotechnology, China Agriculture University, Beijing, China
| | - Ruiai Chen
- State Key Laboratory of Biotechnology and Bio-products Development for Animal Epidemic Prevention, South China Agricultural University, Guangzhou, China
| | - Jishu Shi
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
77
|
Modified isolation method of Arcobacter spp. from different environmental and food samples. Folia Microbiol (Praha) 2015; 60:515-21. [DOI: 10.1007/s12223-015-0395-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
78
|
Jung K, Saif LJ. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J 2015; 204:134-43. [PMID: 25841898 PMCID: PMC7110711 DOI: 10.1016/j.tvjl.2015.02.017] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/03/2022]
Abstract
The etiology and epidemiology of PEDV are described. The disease mechanisms and pathogenesis of PEDV are reviewed. Epidemic PED versus endemic PED are demonstrated. Immunoprophylaxis as a preventive strategy is discussed.
Porcine epidemic diarrhea virus (PEDV), a member of the genera Alphacoronavirus in the family Coronaviridae, causes acute diarrhea/vomiting, dehydration and high mortality in seronegative neonatal piglets. For the last three decades, PEDV infection has resulted in significant economic losses in the European and Asian pig industries, but in 2013–2014 the disease was also reported in the US, Canada and Mexico. The PED epidemic in the US, from April 2013 to the present, has led to the loss of more than 10% of the US pig population. The disappearance and re-emergence of epidemic PED indicates that the virus is able to escape from current vaccination protocols, biosecurity and control systems. Endemic PED is a significant problem, which is exacerbated by the emergence (or potential importation) of multiple PEDV variants. Epidemic PEDV strains spread rapidly and cause a high number of pig deaths. These strains are highly enteropathogenic and acutely infect villous epithelial cells of the entire small and large intestines although the jejunum and ileum are the primary sites. PEDV infections cause acute, severe atrophic enteritis accompanied by viremia that leads to profound diarrhea and vomiting, followed by extensive dehydration, which is the major cause of death in nursing piglets. A comprehensive understanding of the pathogenic characteristics of epidemic or endemic PEDV strains is needed to prevent and control the disease in affected regions and to develop an effective vaccine. This review focuses on the etiology, epidemiology, disease mechanisms and pathogenesis as well as immunoprophylaxis against PEDV infection.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
79
|
Abstract
Arcobacter butzleri is an emerging pathogen that has been implicated as the causative agent of persistent watery diarrhea. We describe a case involving a patient with chronic lymphocytic leukemia who developed invasive A. butzleri bacteremia. This case illustrates the unique challenges involved in diagnosing infections caused by emerging gastrointestinal pathogens.
Collapse
|