51
|
Price J, Gardiner C, Harrison P. Platelet-enhanced plasma: Characterization of a novel candidate resuscitation fluid's extracellular vesicle content, clotting parameters, and thrombin generation capacity. Transfusion 2021; 61:2179-2194. [PMID: 33948950 DOI: 10.1111/trf.16423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Platelet transfusion is challenging in emergency medicine because of short platelet shelf life and stringent storage conditions. Platelet-derived extracellular vesicles (PEV) exhibit platelet-like properties. A plasma generated from expired platelet units rich in procoagulant PEV may be able to combine the benefits of plasma and platelets for resuscitation while increasing shelf life and utilizing an otherwise wasted resource. STUDY DESIGN AND METHODS Freeze-thaw cycling of platelet-rich plasma (PRP) followed by centrifugation to remove platelet remnants was utilized to generate platelet-enhanced plasma (PEP). An in vitro model of dilutional coagulopathy was also designed and used to test PEP. Rotational thromboelastometry and calibrated automated thrombography were used to assess clotting and extracellular vesicles (EV) procoagulant activity. Capture arrays were used to specifically measure EV subpopulations of interest (ExoView™, NanoView Biosciences). Captured vesicles were quantified and labeled with Annexin-V-FITC, CD41-PE, and CD63-AF647. Platelet alpha granule content (platelet-derived growth factor AB, soluble P-selectin, vascular endothelial growth factor A, and neutrophil activating peptide 2-chemokine (C-X-C motif) ligand 7) was measured. Commercially available platelet lysates were also characterized. RESULTS PEP is highly procoagulant, rich in growth factors, exhibits enhanced thrombin generation, and restores hemostasis within an in vitro model of dilutional coagulopathy. The predominant vesicle population were PEV with 7.0 × 109 CD41+PS+ EV/ml compared to 4.7 × 107 CD41+PS+ EV/ml in platelet-free plasma (p = .0079). Commercial lysates show impaired but rescuable clotting. DISCUSSION PEP is a unique candidate resuscitation fluid containing high PEV concentration with preliminary evidence, indicating a potential for upscaling the approach using platelet concentrates. Commercial lysate manufacturer workflows may be suitable for this, but further optimization and characterization of PEP is required.
Collapse
Affiliation(s)
- Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chris Gardiner
- Haemostasis Research, University College London, London, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
52
|
Gaspar RS, Ferreira PM, Mitchell JL, Pula G, Gibbins JM. Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function. Free Radic Biol Med 2021; 165:395-400. [PMID: 33548451 PMCID: PMC7985666 DOI: 10.1016/j.freeradbiomed.2021.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelets release platelet-derived extracellular vesicles (PDEVs) upon activation - in a process that is regulated by generation of reactive oxygen species (ROS). Platelet NADPH oxidase-1 (Nox-1) contributes to ROS generation and thrombus formation downstream of the collagen receptor GPVI. OBJECTIVES We aimed to investigate whether PDEVs contain Nox-1 and whether this is relevant for PDEV-induced platelet activation. METHODS PDEVs were isolated through serial centrifugation after platelet activation with thrombin receptor agonist TRAP-6 (activated PDEVs) or in the absence of agonist (resting PDEVs). The physical properties of PDEVs were analyzed through nanoparticle tracking analysis. Nox-1 levels, fibrinogen binding and P-selectin exposure were measured using flow cytometry, and protein levels quantified by immunoblot analysis. ROS were quantified using DCF fluorescence and electron paramagnetic resonance. RESULTS Nox-1 was found to be increased on the platelet outer membrane upon activation and was present in PDEVs. PDEVs induced platelet activation, while co-addition of GPVI agonist collagen-related peptide (CRP) did not potentiate this response. PDEVs were shown to be able to generate superoxide in a process at least partially mediated by Nox-1, while Nox-1 inhibition with ML171 (also known as 2-APT) did not influence PDEV production. Finally, inhibition of Nox-1 abrogated PDEV-mediated platelet activation. CONCLUSIONS PDEVs are able to generate superoxide, bind to and activate platelets in a process mediated by Nox-1. These data provide novel mechanisms by which Nox-1 potentiates platelet responses, thus proposing Nox-1 inhibition as a feasible strategy to treat and prevent thrombotic diseases.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | - Plinio M Ferreira
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joanne L Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Giordano Pula
- University Medical Center Eppendorf Hamburg, Institute for Clinical Chemistry and Laboratory Medicine, Hamburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
53
|
Coenen DM, Heinzmann ACA, Karel MFA, Cosemans JMEM, Koenen RR. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis 2021; 319:132-141. [PMID: 33468314 DOI: 10.1016/j.atherosclerosis.2020.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an underlying cause of a broad array of cardiovascular diseases characterized by plaques, arterial wall thickening initiated by hyperlipidemia, pro-inflammatory signals, endothelial dysfunction and the influx of inflammatory cells. By still incompletely characterized mechanisms, these plaques can destabilize or erode, leading to thrombosis and blood vessel occlusion and becomes clinically manifest as angina pectoris, myocardial infarction (MI) or stroke. Among the several blood cell types that are involved in the development of atherosclerosis, the role of platelets during the thrombotic occlusion of ruptured or eroded plaques is well established and clinically exploited as evident by the extensive use of platelet inhibitors. However, there is increasing evidence that platelets are also involved in the earlier stages of atheroma development by exhibiting pro-inflammatory activities. The scope of this review is to describe the role of platelets in the initiation and propagation stages of atherosclerosis and beyond; in atherothrombotic complications.
Collapse
Affiliation(s)
- Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Mieke F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
54
|
Pastor L, Vera E, Marin JM, Sanz-Rubio D. Extracellular Vesicles from Airway Secretions: New Insights in Lung Diseases. Int J Mol Sci 2021; 22:E583. [PMID: 33430153 PMCID: PMC7827453 DOI: 10.3390/ijms22020583] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Lung diseases (LD) are one of the most common causes of death worldwide. Although it is known that chronic airway inflammation and excessive tissue repair are processes associated with LD such as asthma, chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF), their specific pathways remain unclear. Extracellular vesicles (EVs) are heterogeneous nanoscale membrane vesicles with an important role in cell-to-cell communication. EVs are present in general biofluids as plasma or urine but also in secretions of the airway as bronchoalveolar lavage fluid (BALF), induced sputum (IS), nasal lavage (NL) or pharyngeal lavage. Alterations of airway EV cargo could be crucial for understanding LD. Airway EVs have shown a role in the pathogenesis of some LD such as eosinophil increase in asthma, the promotion of lung cancer in vitro models in COPD and as biomarkers to distinguishing IPF in patients with diffuse lung diseases. In addition, they also have a promising future as therapeutics for LD. In this review, we focus on the importance of airway secretions in LD, the pivotal role of EVs from those secretions on their pathophysiology and their potential for biomarker discovery.
Collapse
Affiliation(s)
- Laura Pastor
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
| | - Elisabeth Vera
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
- Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jose M. Marin
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
- Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28029 Madrid, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
| |
Collapse
|
55
|
Qian H, Chen R, Wang B, Yuan X, Chen S, Liu Y, Shi G. Associations of Platelet Count with Inflammation and Response to Anti-TNF-α Therapy in Patients with Ankylosing Spondylitis. Front Pharmacol 2020; 11:559593. [PMID: 33343345 PMCID: PMC7741170 DOI: 10.3389/fphar.2020.559593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Increased platelet count has been reported in ankylosing spondylitis (AS) patients, but its clinical significance is still largely elusive. The objective of this study was to evaluate the clinical role of platelet count in AS patients, especially its impact on treatment outcomes. Methods: A case-control study containing 35 AS patients receiving anti-tumor necrosis factor-α (anti-TNF-α) therapy and 45 healthy controls was performed, and AS patients were followed at least 6 months after anti-TNF-α therapy. A systematic review and meta-analysis of studies containing relevant data on outcomes of interest was also performed. Results: AS patients had significantly higher platelet count than controls (p = 0.0001), and the significantly increased platelet count in AS patients was confirmed in a meta-analysis of 14 studies involving 1,223 AS patients and 913 controls (mean difference = 39.61, 95% CI 27.89–51.34, p < 0.001). Besides, platelet count was significantly correlated with ESR (p < 0.001) and was moderately correlated with ASDAS-CRP score (p = 0.002). Moreover, anti-TNF-α therapy could reduce platelet count in AS patients at the first month and the effect was maintained through the treatment duration. In the prospective follow-up study of those 35 AS patients, those responders to anti-TNF-α therapy had significantly lower platelet count than nonresponders (p = 0.015). Logistic regression analysis suggested that lower platelet count was associated with higher possibility of achieving good response to anti-TNF-α therapy in AS patients (odds ratio = 2.26; 95% CI = 1.06–4.82; p = 0.035). Conclusion: This study suggested that platelet count was associated with inflammation severity and treatment outcomes in AS patients, and elevated platelet count was a promising biomarker of poorer response to anti-TNF-α therapy. The findings above need to be validated in more future studies.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoqing Yuan
- Ningbo City Medical Treatment Center Lihuili Hospital, Ningbo, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Kelham M, Choudry FA, Hamshere S, Beirne AM, Rathod KS, Baumbach A, Ahluwalia A, Mathur A, Jones DA. Therapeutic Implications of COVID-19 for the Interventional Cardiologist. J Cardiovasc Pharmacol Ther 2020; 26:203-216. [PMID: 33331160 DOI: 10.1177/1074248420982736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although COVID-19 is viewed primarily as a respiratory disease, cardiovascular risk factors and disease are prevalent among infected patients and are associated with worse outcomes. In addition, among multiple extra-pulmonary manifestations, there has been an increasing recognition of specific cardiovascular complications of COVID-19. Despite this, in the initial stages of the pandemic there was evidence of a reduction in patients presenting to acute cardiovascular services. In this masterclass review, with the aid of 2 exemplar cases, we will focus on the important therapeutic implications of COVID-19 for interventional cardiologists. We summarize the existing evidence base regarding the varied cardiovascular presentations seen in COVID-19 positive patients and the prognostic importance and potential mechanisms of acute myocardial injury in this setting. Importantly, through the use of a systematic review of the literature, we focus our discussion on the observed higher rates of coronary thrombus burden in patients with COVID-19 and acute coronary syndromes.
Collapse
Affiliation(s)
- Matthew Kelham
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Fizzah A Choudry
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Stephen Hamshere
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Anne-Marie Beirne
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Krishnaraj S Rathod
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Amrita Ahluwalia
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| |
Collapse
|
57
|
Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z, Neil D, Hoefer IE, Fragiadaki M, Waltenberger J, Weber C, Bochaton-Piallat ML, Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res 2020; 116:2177-2184. [PMID: 32750108 PMCID: PMC7454368 DOI: 10.1093/cvr/cvaa230] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world. Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications.
Collapse
Affiliation(s)
- Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield and Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Justin C Mason
- Vascular Science, National Heart and Lung Institute, Imperial College London and Rheumatology Department, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Elena Osto
- University and University Hospital Zurich, Institute of Clinical Chemistry and University Heart Center, Zurich, Switzerland and Swiss Federal Institute of Technology, Laboratory of Translational Nutrition Biology, Zurich, Switzerland
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Desley Neil
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Centre Utrecht, The Netherlands
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield and Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany and SRH Central Hospital Suhl, Suhl, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | - Magnus Bäck
- Center for Molecular Medicine and Department of Cardiology, Karolinska University Hospital, Solna, Stockholm, Sweden and INSERM U1116, Université de Lorraine, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre les Nancy, France
| |
Collapse
|
58
|
Johnson J, Wu YW, Blyth C, Lichtfuss G, Goubran H, Burnouf T. Prospective Therapeutic Applications of Platelet Extracellular Vesicles. Trends Biotechnol 2020; 39:598-612. [PMID: 33160678 DOI: 10.1016/j.tibtech.2020.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
There is much interest in the use of extracellular vesicles (EVs) as a subcellular therapy for regenerative medicine and drug delivery. Blood-borne platelets represent a source of therapeutic EVs that is so far largely unexplored. Advantages of platelets as a cellular source of EVs include their established clinical value, regulated collection procedures, availability in a concentrated form, propensity to generate EVs, and unique composition and tissue-targeting capacity. This review analyzes the unique potential of platelet-derived (p-) EVs as therapeutic modalities and presents their inherent translational advantages for hemostasis, for regenerative medicine, and as drug-delivery vehicles.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chantelle Blyth
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia
| | - Gregor Lichtfuss
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
59
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions. Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
60
|
Gavin RL, Koo CZ, Tomlinson MG. Tspan18 is a novel regulator of thrombo-inflammation. Med Microbiol Immunol 2020; 209:553-564. [PMID: 32447449 PMCID: PMC7395042 DOI: 10.1007/s00430-020-00678-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The interplay between thrombosis and inflammation, termed thrombo-inflammation, causes acute organ damage in diseases such as ischaemic stroke and venous thrombosis. We have recently identified tetraspanin Tspan18 as a novel regulator of thrombo-inflammation. The tetraspanins are a family of 33 membrane proteins in humans that regulate the trafficking, clustering, and membrane diffusion of specific partner proteins. Tspan18 partners with the store-operated Ca2+ entry channel Orai1 on endothelial cells. Orai1 appears to be expressed in all cells and is critical in health and disease. Orai1 mutations cause human immunodeficiency, resulting in chronic and often lethal infections, while Orai1-knockout mice die at around the time of birth. Orai1 is a promising drug target in autoimmune and inflammatory diseases, and Orai1 inhibitors are in clinical trials. The focus of this review is our work on Tspan18 and Orai1 in Tspan18-knockout mice and Tspan18-knockdown primary human endothelial cells. Orai1 trafficking to the cell surface is partially impaired in the absence of Tspan18, resulting in impaired Ca2+ signaling and impaired release of the thrombo-inflammatory mediator von Willebrand factor following endothelial stimulation. As a consequence, Tspan18-knockout mice are protected in ischemia-reperfusion and deep vein thrombosis models. We provide new evidence that Tspan18 is relatively highly expressed in endothelial cells, through the analysis of publicly available single-cell transcriptomic data. We also present new data, showing that Tspan18 is required for normal Ca2+ signaling in platelets, but the functional consequences are subtle and restricted to mildly defective platelet aggregation and spreading induced by the platelet collagen receptor GPVI. Finally, we generate structural models of human Tspan18 and Orai1 and hypothesize that Tspan18 regulates Orai1 Ca2+ channel function at the cell surface by promoting its clustering.
Collapse
Affiliation(s)
- Rebecca L Gavin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
61
|
Price J, Lord JM, Harrison P. Inflammaging and platelet hyperreactivity: A new therapeutic target? J Thromb Haemost 2020; 18:3-5. [PMID: 31894663 DOI: 10.1111/jth.14670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua Price
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paul Harrison
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|