51
|
Muroya S, Ueda S, Komatsu T, Miyakawa T, Ertbjerg P. MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals. Metabolites 2020; 10:E188. [PMID: 32403398 PMCID: PMC7281660 DOI: 10.3390/metabo10050188] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)-mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality.
Collapse
Affiliation(s)
- Susumu Muroya
- NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki 305-0901, Japan
| | - Shuji Ueda
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan;
| | - Tomohiko Komatsu
- Livestock Research Institute of Yamagata Integrated Research Center, Shinjo, Yamagata 996-0041, Japan;
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
52
|
Serum metabolomic fingerprints of lambs fed chitosan and its association with performance and meat quality traits. Animal 2020; 14:1987-1998. [PMID: 32290896 DOI: 10.1017/s1751731120000749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chitosan (CHI) is a natural biopolymer with antimicrobial, anti-inflammatory, antioxidant and digestive modulatory effects, which can be used in the ruminant diet to replace antibiotics. The aim of this study was to evaluate the effects of CHI on lamb growth traits, nutrients digestibility, muscle and fatty deposition, meat fatty acid (FA) profile, meat quality traits and serum metabolome. Thirty 30-month-old male lambs, half Suffolk and half Dorper, with an average BW of 21.65 ± 0.86 kg, were fed in a feedlot system for a total of 70 days. The lambs were separated into two groups according to the diet: the control (CON) group which received the basal diet and the CHI group which received the basal diet with the addition of CHI as 2 g/kg of DM in the diet. Lambs supplemented with CHI had a greater (P < 0.05) final BW, DM intake, final body metabolic weight (P < 0.05) and lower residual feed intake than the CON group. Animals fed CHI had a greater (P < 0.05) starch digestibility at 14 and 28 days, average daily gain at 14, 42 and 56 days, greater feed efficiency at 28 days and feed conversation at 14 and 42 days in feedlot. Most of the carcass traits were not affected (P > 0.05) by the treatment; however, the CHI supplementation improved (P < 0.05) dressing and longissimus muscle area. The treatments had no effect (P > 0.05) on the meat colour and other quality measurements. Meat from the CHI-fed lambs had a greater concentration (P < 0.05) of oleic-cis-9 acid, linoleic acid, linolenic-trans-6 acid, arachidonic acid and eicosapentaenoic acid. According to the variable importance in projection score, the most important metabolites to differentiate between the CON and the CHI group were hippurate, acetate, hypoxanthine, arginine, malonate, creatine, choline, myo-inositol, 2-oxoglutarate, alanine, glycerol, carnosine, histidine, glutamate and 3-hydroxyisobutyrate. Similarly, fold change (FC) analysis highlighted succinate (FC = 1.53), arginine (FC = 1.51), hippurate (FC = 0.68), myo-inositol (FC = 1.48), hypoxanthine (FC = 1.45), acetate (FC = 0.73) and malonate (FC = 1.35) as metabolites significantly different between groups. In conclusion, the present data showed that CHI changes the muscle metabolism improving muscle mass deposition, the lamb's performance and carcass dressing. In addition, CHI led to an alteration in the FA metabolism, changes in the meat FA profile and improvements in meat quality.
Collapse
|
53
|
Lake JA, Abasht B. Glucolipotoxicity: A Proposed Etiology for Wooden Breast and Related Myopathies in Commercial Broiler Chickens. Front Physiol 2020; 11:169. [PMID: 32231585 PMCID: PMC7083144 DOI: 10.3389/fphys.2020.00169] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
Wooden breast is one of several myopathies of fast-growing commercial broilers that has emerged as a consequence of intensive selection practices in the poultry breeding industry. Despite the substantial economic burden presented to broiler producers worldwide by wooden breast and related muscle disorders such as white striping, the genetic and etiological underpinnings of these diseases are still poorly understood. Here we propose a new hypothesis on the primary causes of wooden breast that implicates dysregulation of lipid and glucose metabolism. Our hypothesis addresses recent findings that have suggested etiologic similarities between wooden breast and type 2 diabetes despite their phenotypic disparities. Unlike in mammals, dysregulation of lipid and glucose metabolism is not accompanied by an increase in plasma glucose levels but generates a unique skeletal muscle phenotype, i.e., wooden breast, in chickens. We hypothesize that these phenotypic disparities result from a major difference in skeletal muscle glucose transport between birds and mammals, and that the wooden breast phenotype most closely resembles complications of diabetes in smooth and cardiac muscle of mammals. Additional basic research on wooden breast and related muscle disorders in commercial broiler chickens is necessary and can be informative for poultry breeding and production as well as for human health and disease. To inform future studies, this paper reviews the current biological knowledge of wooden breast, outlines the major steps in its proposed pathogenesis, and examines how selection for production traits may have contributed to its prevalence.
Collapse
Affiliation(s)
- Juniper A. Lake
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Behnam Abasht
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
54
|
|
55
|
Soglia F, Silva A, Lião L, Laghi L, Petracci M. Effect of broiler breast abnormality and freezing on meat quality and metabolites assessed by 1 H-NMR spectroscopy. Poult Sci 2019; 98:7139-7150. [PMID: 31529072 PMCID: PMC8913964 DOI: 10.3382/ps/pez514] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/29/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- F. Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - A.K. Silva
- Federal University of Goiás, Chemical Institute, NMR Laboratory, Esperança Avenue, Samambaia Campus, 74690-900 Goiânia, GO, Brazil
| | - L.M. Lião
- Federal University of Goiás, Chemical Institute, NMR Laboratory, Esperança Avenue, Samambaia Campus, 74690-900 Goiânia, GO, Brazil
| | - L. Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - M. Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Corresponding author
| |
Collapse
|
56
|
Malila Y, Thanatsang K, Arayamethakorn S, Uengwetwanit T, Srimarut Y, Petracci M, Strasburg GM, Rungrassamee W, Visessanguan W. Absolute expressions of hypoxia-inducible factor-1 alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle with white striping and wooden breast myopathies. PLoS One 2019; 14:e0220904. [PMID: 31393948 PMCID: PMC6687142 DOI: 10.1371/journal.pone.0220904] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/25/2019] [Indexed: 01/29/2023] Open
Abstract
Development of white striping (WS) and wooden breast (WB) in broiler breast meat have been linked to hypoxia, but their etiologies are not fully understood. This study aimed at investigating absolute expression of hypoxia-inducible factor-1 alpha subunit (HIF1A) and genes involved in stress responses and muscle repair using a droplet digital polymerase chain reaction. Total RNA was isolated from pectoralis major collected from male 6-week-old medium (carcass weight ≤ 2.5 kg) and heavy (carcass weight > 2.5 kg) broilers. Samples were classified as “non-defective” (n = 4), “medium-WS” (n = 6), “heavy-WS” (n = 7) and “heavy-WS+WB” (n = 3) based on abnormality scores. The HIF1A transcript was up-regulated in all of the abnormal groups. Transcript abundances of genes encoding 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), lactate dehydrogenase-A (LDHA), and phosphorylase kinase beta subunit (PHKB) were increased in heavy-WS but decreased in heavy-WS+WB. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was up-regulated in non-defective samples. The muscle-specific mu-2 isoform of glutathione S-transferases (GSTM2) was up-regulated in the abnormal samples, particularly in the heavy groups. The genes encoding myogenic differentiation (MYOD1) and myosin light chain kinase (MYLK) exhibited similar expression pattern, of which medium-WS and heavy-WS significantly increased compared to non-defective whereas expression in heavy-WS+WB was not different from either non-defective or WS-affected group. The greatest and the lowest levels of calpain-3 (CAPN3) and delta-sarcoglycan (SCGD) were observed in heavy-WS and heavy-WS+WB, respectively. Based on micrographs, the abnormal muscles primarily comprised fibers with cross-sectional areas ranging from 2,000 to 3,000 μm2. Despite induced glycolysis at the transcriptional level, lower stored glycogen in the abnormal muscles corresponded with the reduced lactate and higher pH within their meats. The findings support hypoxia within the abnormal breasts, potentially associated with oversized muscle fibers. Between WS and WB, divergent glucose metabolism, cellular detoxification and myoregeneration at the transcriptional level could be anticipated.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Krittaporn Thanatsang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
57
|
Zampiga M, Soglia F, Petracci M, Meluzzi A, Sirri F. Effect of different arginine-to-lysine ratios in broiler chicken diets on the occurrence of breast myopathies and meat quality attributes. Poult Sci 2019; 98:2691-2697. [DOI: 10.3382/ps/pey608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/24/2019] [Indexed: 01/10/2023] Open
|
58
|
Salles GBC, Boiago MM, Silva AD, Morsch VM, Gris A, Mendes RE, Baldissera MD, da Silva AS. Lipid peroxidation and protein oxidation in broiler breast fillets with white striping myopathy. J Food Biochem 2019; 43:e12792. [PMID: 31353592 DOI: 10.1111/jfbc.12792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate whether broiler breast fillets with severe white striping (WS) had elevated levels of lipid peroxidation and protein oxidation, as well as antioxidant responses. A total of 45 breast muscles from broiler chickens were divided into three groups (n = 15): normal, moderate (stripes <1 mm) and severe (stripes >1 mm). Chicken breasts with severe WS showed muscular cells with small areas and diameters (p < 0.05), as well as the presence of inflammatory cells. Higher percentages of moisture content, fat, collagen, and smaller protein content than did WS breast samples compared control. Breast samples with moderate and severe degrees of WS had higher reactive oxygen species levels and advanced oxidation protein products than did the control group, and animals with severe WS had higher lipid peroxidation levels. The activities of glutathione peroxidase and glutathione S-transferase were higher (p < 0.0001) in animals with moderate WS than those in the control. PRACTICAL APPLICATIONS: White striping myopathy in broiler breast fillets is characterized by the presence of parallel white stripes in the same direction as the muscular fiber, commonly occurring in the pectoralis major muscle. The results showed that chicken breasts with WS demonstrated imbalances of antioxidant/oxidant status, characterizing increases of lipid peroxidation and protein oxidation in muscle. This situation does not prevent the consumption of the meat, but negatively affects its quality.
Collapse
Affiliation(s)
| | - Marcel Manente Boiago
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| | - Anielen Dutra Silva
- Graduate Program in Toxicological Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Graduate Program in Toxicological Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Anderson Gris
- Veterinary Pathology Laboratory, Instituto Federal Catarinense, Concordia, Brazil
| | | | - Matheus D Baldissera
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aleksandro Schafer da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil.,Graduate Program in Toxicological Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
59
|
Petracci M, Soglia F, Madruga M, Carvalho L, Ida E, Estévez M. Wooden-Breast, White Striping, and Spaghetti Meat: Causes, Consequences and Consumer Perception of Emerging Broiler Meat Abnormalities. Compr Rev Food Sci Food Saf 2019; 18:565-583. [PMID: 33336940 DOI: 10.1111/1541-4337.12431] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
Abstract
Ten years ago, the occurrence of macroscopic defects in breasts muscles from fast-growing broilers challenged producers and animal scientists to label and characterize myopathies wholly unknown. The distinctive white striations in breasts affected by white striping disorder, the presence of out-bulging and pale areas of hardened consistency in the so-called wooden breast, and the separation of the fiber bundles in breasts labelled as spaghetti meat, made these myopathies easily identified in chicken carcasses. Yet, the high incidence of these myopathies and the increasing concern by producers and retailers led to an unprecedented flood of questions on the causes and consequences of these abnormal chicken breasts. This review comprehensively collects the most relevant information from studies aimed to understand the pathological mechanisms of these myopathies, their physicochemical and histological characterization and their impact on meat quality and consumer's preferences. Today, it is known that the occurrence is linked to fast-growth rates of the birds and their large breast muscles. The muscle hypertrophy along with an unbalanced growth of supportive connective tissue leads to a compromised blood supply and hypoxia. The occurrence of oxidative stress and mitochondrial dysfunction leads to lipidosis, fibrosis, and overall myodegeneration. Along with the altered appearance, breast muscles affected by the myopathies display poor technological properties, impaired texture properties, and reduced nutritional value. As consumer's awareness on the occurrence of these abnormalities and the concerns on animal welfare arise, efforts are made to inhibit the onset of the myopathies or alleviate the severity of the symptoms. The lack of fully effective dietary strategies leads scientists to propose whether "slow" production systems may alternatively provide with poultry meat free of these myopathies.
Collapse
Affiliation(s)
- M Petracci
- Dept. of Agricultural and Food Sciences, Alma Mater Studiorum, Univ. of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - F Soglia
- Dept. of Agricultural and Food Sciences, Alma Mater Studiorum, Univ. of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - M Madruga
- Postgraduate program in Food Science and Technology. Dept. of Food Engineering, Federal Univ. of Paraiba, João Pessoa, Paraíba, Brazil
| | - L Carvalho
- Postgraduate program in Food Science and Technology. Dept. of Food Engineering, Federal Univ. of Paraiba, João Pessoa, Paraíba, Brazil
| | - Elza Ida
- Dept. of Food Technology, Londrina State Univ., Londrina, Brazil
| | - M Estévez
- Meat and Meat Products Research Inst., TECAL Research Group, Univ. of Extremadura, Avda. Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
60
|
Marchesi J, Ibelli A, Peixoto J, Cantão M, Pandolfi J, Marciano C, Zanella R, Settles M, Coutinho L, Ledur M. Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens. Poult Sci 2019; 98:590-601. [DOI: 10.3382/ps/pey429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 01/10/2023] Open
|
61
|
Zampiga M, Laghi L, Petracci M, Zhu C, Meluzzi A, Dridi S, Sirri F. Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J Anim Sci Biotechnol 2018; 9:79. [PMID: 30455879 PMCID: PMC6223088 DOI: 10.1186/s40104-018-0294-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background Due to the important functions of arginine in poultry, it should be questioned whether the currently adopted dietary Arg:Lys ratios are sufficient to meet the modern broiler requirement in arginine. The present study aimed, therefore, to evaluate the effects of the dietary supplementation of L-arginine in a commercial broiler diet on productive performance, breast meat quality attributes, incidence and severity of breast muscle myopathies and foot pad dermatitis (FPD), and plasma and muscle metabolomics profile in fast-growing broilers. Results A total of 1,170 1-day-old Ross 308 male chicks was divided into two experimental groups of 9 replicates each fed either a commercial basal diet (CON, digestible Arg:Lys ratio of 1.05, 1.05, 1.06 and 1.07 in each feeding phase, respectively) or the same basal diet supplemented on-top with crystalline L-arginine (ARG, digestible Arg:Lys ratio of 1.15, 1.15, 1.16 and 1.17, respectively). Productive parameters were determined at the end of each feeding phase (12, 22, 33, 43 d). At slaughter (43 d), incidence and severity of FPD and breast myopathies were assessed, while plasma and breast muscle samples were collected and analyzed by proton nuclear magnetic resonance-spectroscopy. The dietary supplementation of arginine significantly reduced cumulative feed conversion ratio compared to the control diet at 12 d (1.352 vs. 1.401, P < 0.05), 22 d (1.398 vs. 1.420; P < 0.01) and 33 d (1.494 vs. 1.524; P < 0.05), and also tended to improve it in the overall period of trial (1.646 vs. 1.675; P = 0.09). Body weight was significantly increased in ARG compared to CON group at 33 d (1,884 vs. 1,829 g; P < 0.05). No significant effect was observed on meat quality attributes, breast myopathies and FPD occurrence. ARG birds showed significantly higher plasma concentration of arginine and leucine, and lower of acetoacetate, glutamate, adenosine and proline. Arginine and acetate concentrations were higher, whereas acetone and inosine levels were lower in the breast of ARG birds (P < 0.05). Conclusions Taken together, these data showed that increased digestible Arg:Lys ratio had positive effects on feed efficiency in broiler chickens probably via modulation of metabolites that play key roles in energy and protein metabolism.
Collapse
Affiliation(s)
- Marco Zampiga
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| | - Luca Laghi
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| | - Massimiliano Petracci
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| | - Chenglin Zhu
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| | - Adele Meluzzi
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| | - Sami Dridi
- 2Center of Excellence for Poultry Science, University of Arkansas Fayetteville, Fayetteville, AR 72701 USA
| | - Federico Sirri
- 1Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
62
|
Soglia F, Mazzoni M, Petracci M. Spotlight on avian pathology: current growth-related breast meat abnormalities in broilers. Avian Pathol 2018; 48:1-3. [PMID: 30246553 DOI: 10.1080/03079457.2018.1508821] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Selection for fast-growing and high-breast-yield hybrids has enormously increased the pressure on muscle development rate and mass, indirectly promoting the development of muscular abnormalities affecting the pectoral muscles such as White Striping, Wooden Breast and Spaghetti Meat. Macroscopically, the muscles affected by these defects exhibit distinctive traits, whereas the microscopic examinations evidenced similar histological alterations. Therefore, a common causative mechanism (involving genes related to several metabolic pathways and functional categories) underpinning the occurrence of these abnormalities may be hypothesized and directly associated with muscle hypertrophy induced by selection. Within this context, as the occurrence of growth-related abnormalities may negatively affect consumer attitude and certainly leads to considerable economic losses, resulting from meat downgrading, it clearly emphasizes the need to consider those issues related to muscle growth and meat quality when selecting meat-type genotypes.
Collapse
Affiliation(s)
- Francesca Soglia
- a Department of Agricultural and Food Sciences , Alma Mater Studiorum - University of Bologna , Cesena , Italy
| | - Maurizio Mazzoni
- b Department of Veterinary Medical Sciences , Alma Mater Studiorum - University of Bologna , Ozzano dell'Emilia , Italy
| | - Massimiliano Petracci
- a Department of Agricultural and Food Sciences , Alma Mater Studiorum - University of Bologna , Cesena , Italy
| |
Collapse
|