51
|
Tekko IA, Permana AD, Vora L, Hatahet T, McCarthy HO, Donnelly RF. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur J Pharm Sci 2020; 152:105469. [PMID: 32679177 PMCID: PMC7417809 DOI: 10.1016/j.ejps.2020.105469] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX), typically used as its sodium salt (MTX Na), is a first-line treatments for moderate to severe psoriasis, showing good efficacy. However, its systemic administration is associated with many side effects. Intradermal delivery into psoriatic tissue could offer an alternative approach. However, successful intradermal administration of MTX Na is currently precluded by its physicochemical properties. Moreover, due to its hydrophilic nature, MTX Na is swiftly cleared from the target tissue, necessitating frequent dosing which may affect patient compliance. To address these limitations, we investigated the combination of nanocrystal (NC) and dissolving microneedle (MN) technologies as an alternative approach for localised and sustained intradermal delivery of MTX Na. Poorly water-soluble MTX nanocrystals (MTX NC) were produced by a bottom-up technique with a mean particle size of 678 ± 15 nm. Sustained in vitro drug release was observed over 72 h. The MTX NC were then incorporated into the shafts of dissolving MN arrays with a drug loading of 2.48 mg/array. The MTX NC-loaded MN arrays exhibited satisfactory mechanical strength and insertion capabilities in the skin-simulant Parafilm M® and their shafts dissolved entirely in less than 20 min after insertion into excised neonatal porcine skin. Importantly, in vivo studies in Sprague Dawley rats revealed that the MN arrays were able to deposit approximately 25.1% of the loaded MTX NC in the skin, which acted, in turn, as a drug depot and released the MTX in a sustained manner over 72 h, while minimising MTX systemic exposure. Indeed, 24 h from MN application, 312.70 ± 161.95 µg/g of MTX was retained in the skin at the application site. This was approximately 322-fold higher than the amount of MTX (0.942 ± 0.59 µg/g) retained in the skin after oral administration of MTX Na. Interestingly, even after 72 h after MN application, around 12.5% of the MTX NC deposited in the skin by the MN was retained. In contrast, the maximal blood concentration of MTX achieved following MN application, was only 40% of that measured after oral administration of MTX Na. Accordingly, MTX NC-loaded dissolving MN arrays could be a promising approach for effective localised and sustained intradermal delivery of MTX as a potential enhanced treatment for psoriasis.
Collapse
Affiliation(s)
- Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Taher Hatahet
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
52
|
Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in Antimicrobial Microneedle Patches for Combating Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002129. [PMID: 32602146 DOI: 10.1002/adma.202002129] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Indexed: 05/22/2023]
Abstract
Skin infections caused by bacteria, viruses and fungi are difficult to treat by conventional topical administration because of poor drug penetration across the stratum corneum. This results in low bioavailability of drugs to the infection site, as well as the lack of prolonged release. Emerging antimicrobial transdermal and ocular microneedle patches have become promising medical devices for the delivery of various antibacterial, antifungal, and antiviral therapeutics. In the present review, skin anatomy and its barriers along with skin infection are discussed. Potential strategies for designing antimicrobial microneedles and their targeted therapy are outlined. Finally, biosensing microneedle patches associated with personalized drug therapy and selective toxicity toward specific microbial species are discussed.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, P. R. China
| | - Ehsan N Zare
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710000, P. R. China
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples, 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran
| |
Collapse
|
53
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|
54
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
55
|
Wang C, Makvandi P, Zare EN, Tay FR, Niu L. Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen‐yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
| | - Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz 6153753843 Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR) Naples 80125 Italy
| | | | - Franklin R. Tay
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| | - Li‐na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| |
Collapse
|
56
|
Jamaledin R, Sartorius R, Di Natale C, Vecchione R, De Berardinis P, Netti PA. Recombinant Filamentous Bacteriophages Encapsulated in Biodegradable Polymeric Microparticles for Stimulation of Innate and Adaptive Immune Responses. Microorganisms 2020; 8:microorganisms8050650. [PMID: 32365728 PMCID: PMC7285279 DOI: 10.3390/microorganisms8050650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022] Open
Abstract
Escherichia coli filamentous bacteriophages (M13, f1, or fd) have attracted tremendous attention from vaccinologists as a promising immunogenic carrier and vaccine delivery vehicle with vast possible applications in the development of vaccines. The use of fd bacteriophage as an antigen delivery system is based on a modification of bacteriophage display technology. In particular, it is designed to express multiple copies of exogenous peptides (or polypeptides) covalently linked to viral capsid proteins. This study for the first time proposes the use of microparticles (MPs) made of poly (lactic-co-glycolic acid) (PLGA) to encapsulate fd bacteriophage. Bacteriophage–PLGA MPs were synthesized by a water in oil in water (w1/o/w2) emulsion technique, and their morphological properties were analyzed by confocal and scanning electron microscopy (SEM). Moreover, phage integrity, encapsulation efficiency, and release were investigated. Using recombinant bacteriophages expressing the ovalbumin (OVA) antigenic determinant, we demonstrated the immunogenicity of the encapsulated bacteriophage after being released by MPs. Our results reveal that encapsulated bacteriophages are stable and retain their immunogenic properties. Bacteriophage-encapsulated PLGA microparticles may thus represent an important tool for the development of different bacteriophage-based vaccine platforms.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy; (R.J.); (C.D.N.); (P.A.N.)
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 80131 Naples, Italy; (R.S.); (P.D.B.)
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy; (R.J.); (C.D.N.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy; (R.J.); (C.D.N.); (P.A.N.)
- Correspondence:
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy; (R.J.); (C.D.N.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
57
|
Di Natale C, Onesto V, Lagreca E, Vecchione R, Netti PA. Tunable Release of Curcumin with an In Silico-Supported Approach from Mixtures of Highly Porous PLGA Microparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1807. [PMID: 32290458 PMCID: PMC7215757 DOI: 10.3390/ma13081807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report the ability to predict and tune the release of curcumin (CUR), used as a model drug, from a designed combination of different poly(d,l-lactide-co-glycolide) (PLGA) MPs kinds. In detail, all CUR-PLGA MPs were synthesized by double emulsion technique and their chemical-physical properties were characterized by Mastersizer and scanning electron microscopy (SEM). Moreover, for all the MPs, CUR encapsulation efficiency and kinetic release were investigated through the UV-vis spectroscopy. This approach, based on the combination of in silico and experimental methods, could be a promising platform in several biomedical applications such as vaccinations, cancer-treatment, diabetes therapy and so on.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
58
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
59
|
Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020; 9:E542. [PMID: 32079212 PMCID: PMC7073601 DOI: 10.3390/jcm9020542] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Zahra Baghban Taraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | | | - Pooyan Makvandi
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
- Institute for polymers, Composites and biomaterials (IPCB), National research council (CNR), 80125 Naples, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 61537-53843, Ahvaz, Iran
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
60
|
Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3279-3300. [PMID: 31873003 DOI: 10.1021/acsami.9b19435] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the different synthetic polymers developed for biomedical applications, poly(lactic-co-glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocomposites in future research in the biomedical field.
Collapse
Affiliation(s)
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
- Department of Chemical, Materials and Industrial Production Engineering , University of Naples Federico II , Naples 80125 , Italy
| | - Parvaneh Naserzadeh
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Nanomedicine and Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran 1985717443 , Iran
| | - Elham Afjeh-Dana
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Mehdi Hosseinzadeh
- Health Management and Economics Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Computer Science , University of Human Development , Sulaymaniyah , Iraq
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
| | - Aimin Wu
- Department of Orthopedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Franklin R Tay
- College of Graduate Studies , Augusta University , Augusta , Georgia 30912 , United States
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology , The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| |
Collapse
|
61
|
Zare EN, Makvandi P. Antimicrobial Metal-Based Nanomaterials and Their Industrial and Biomedical Applications. ENGINEERED ANTIMICROBIAL SURFACES 2020. [DOI: 10.1007/978-981-15-4630-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|