51
|
Qin N, Shen M, Xiang P, Wen D, Shen B, Deng H, Qiang H, Song F, Shi Y. Determination of 37 fentanyl analogues and novel synthetic opioids in hair by UHPLC-MS/MS and its application to authentic cases. Sci Rep 2020; 10:11569. [PMID: 32665579 PMCID: PMC7360565 DOI: 10.1038/s41598-020-68348-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
The recent emergence of new fentanyl analogues and synthetic opioids on the drug market poses a global public health threat. However, these compounds cannot typically be identified using existing analytical methods. In this study, we aimed to develop and validate a rapid and sensitive method based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of 37 fentanyl analogues and novel synthetic opioids in hair samples. Hair samples (20 mg) were extracted by cryogenic grinding in an extraction medium of methanol, acetonitrile, and 2 mmol/L ammonium acetate (pH 5.3). Following centrifugation of the samples, the analytes were separated using a WATERS Acquity UPLC HSS T3 column. The limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.5 to 2.5 pg/mg and from 2 to 5 pg/mg, respectively. The intraday and interday precisions were within 13.32% at LOQ, low, medium, and high levels. The accuracies were within the range of 85.63-116.1%. The extraction recoveries were in the range of 89.42-119.68%, and the matrix effects were within the range of 44.81-119.77%. Furthermore, the method was successfully applied to the detection and quantification of fentanyl and sufentanil in hair samples from two authentic cases. Thus, this method has great potential for detecting fentanyl analogues and novel synthetic opioids in forensic work.
Collapse
Affiliation(s)
- Nan Qin
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Min Shen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, 050000, China
| | - Baohua Shen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Hongxiao Deng
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Huosheng Qiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Fenyun Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, 200063, China.
| |
Collapse
|
52
|
Larabi IA, Martin M, Etting I, Pfau G, Edel Y, Alvarez JC. Development and validation of liquid chromatography-tandem mass spectrometry targeted screening of 16 fentanyl analogs and U-47700 in hair: Application to 137 authentic samples. Drug Test Anal 2020; 12:1298-1308. [PMID: 32476263 DOI: 10.1002/dta.2868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
This study was to validate a LC-MS/MS method for the determination of 17 new synthetic opioids (NSOs) in hair including 3-fluorofentanyl, 3-methylfentanyl, acetylfentanyl, acetylnorfentanyl, alfentanyl, butyrylfentanyl, butyrylnorfentanyl, carfentanil, fentanyl, furanylfentanyl, furanylnorfentanyl, methoxyacetylfentanyl, norcarfentanil, norfentanyl, ocfentanil, sufentanil, and U-47700, and to apply it to 137 authentic samples. Twenty milligrams of hair was decontaminated in dichloromethane and underwent liquid extraction. 10 μL of the reconstituted residue were injected onto the system. The separation was performed in 12 minutes in a gradient mode at a flow rate of 300 μL/min using a Hypersyl Gold PFP column (100 × 2.1 mm i.d., 1.9 μm) maintained at 30°C. Compounds were detected in positive ionization and MRM modes using a TSQ Endura mass spectrometer (ThermoFisher). The method was validated according to EMA guidelines. The LLOQ was in the range 1-50 pg/mg, and the calibration ranged from the LLOQ-1000 pg/mg. Intra- and inter-day accuracy (bias) and precision were < 15%. Extraction recoveries of parent drugs and metabolites were 74-120% and 7-62%, respectively. The matrix effect was in the range 59-126% (CVs ≤ 12.9%). Fentanyl was found in six cases at concentrations of < 1-1650 pg/mg (n = 14 segments). Five fentanyl analogs were quantified in two cases: 3-fluorofentanyl (25-150 pg/mg, n = 5), furanylfentanyl (15-500 pg/mg, n = 5), methoxyacetylfentanyl (500-600 pg/mg, n = 2), acetylfentanyl (1 pg/mg, n = 2), carfentanyl (2.5-3 pg/mg, n = 2). This fully validated method allowed us to test for the first time 3-fluorofentanyl and norcarfentanil in hair among 15 other NSOs, and brings new data regarding 3-fluorofentanyl and methoxyacetylfentanyl hair concentrations.
Collapse
Affiliation(s)
- Islam Amine Larabi
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines University), Inserm U-1173, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Marie Martin
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines University), Inserm U-1173, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Isabelle Etting
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines University), Inserm U-1173, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Gregory Pfau
- Addiction clinic, Pitié Salpétrière hospital, AP-HP, Paris, France
| | - Yves Edel
- Addiction clinic, Pitié Salpétrière hospital, AP-HP, Paris, France
| | - Jean Claude Alvarez
- Department of Pharmacology and Toxicology, Paris-Saclay University (Versailles Saint-Quentin-en-Yvelines University), Inserm U-1173, Raymond Poincaré Hospital, AP-HP, Garches, France
| |
Collapse
|
53
|
Moss RB, Pryor MM, Baillie R, Kudrycki K, Friedrich C, Reed M, Carlo DJ. Higher naloxone dosing in a quantitative systems pharmacology model that predicts naloxone-fentanyl competition at the opioid mu receptor level. PLoS One 2020; 15:e0234683. [PMID: 32544184 PMCID: PMC7297366 DOI: 10.1371/journal.pone.0234683] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Rapid resuscitation of an opioid overdose with naloxone, an opioid antagonist, is critical. We developed an opioid receptor quantitative systems pharmacology (QSP) model for evaluation of naloxone dosing. In this model we examined three opioid exposure levels that have been reported in the literature (25 ng/ml, 50 ng/ml, and 75 ng/ml of fentanyl). The model predicted naloxone-fentanyl interaction at the mu opioid receptor over a range of three naloxone doses. For a 2 mg intramuscular (IM) dose of naloxone at lower fentanyl exposure levels (25 ng/ml and 50 ng/ml), the time to decreasing mu receptor occupancy by fentanyl to 50% was 3 and 10 minutes, respectively. However, at a higher fentanyl exposure level (75 ng/ml), a dose of 2 mg IM of the naloxone failed to reduce mu receptor occupancy by fentanyl to 50%. In contrast, naloxone doses of 5 mg and 10 mg IM reduced mu receptor occupancy by fentanyl to 50% in 5.5 and 4 minutes respectively. These results suggest that the current doses of naloxone (2 mg IM or 4 mg intranasal (IN)) may be inadequate for rapid reversal of toxicity due to fentanyl exposure and that increasing the dose of naloxone is likely to improve outcomes.
Collapse
Affiliation(s)
- Ronald B. Moss
- Adamis Pharmaceuticals Corp, San Diego, CA, United States of America
- * E-mail:
| | | | | | | | | | - Mike Reed
- Rosa & Co. LLC, San Carlos, CA, United States of America
| | - Dennis J. Carlo
- Adamis Pharmaceuticals Corp, San Diego, CA, United States of America
| |
Collapse
|
54
|
Postmortem analysis of quetiapine and pregabalin in human bone. Leg Med (Tokyo) 2020; 46:101717. [PMID: 32442861 DOI: 10.1016/j.legalmed.2020.101717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 11/23/2022]
Abstract
In this study quetiapine and pregabalin were analyzed in human bones. A method previously developed for the determination of antidepressants in human bone was tested for the analysis of these two substances. Bones were pulverized and subjected to the extraction protocol, and after undergoing solid-phase extraction, samples were analyzed using gas chromatography-mass spectrometry. The assay was validated in the range 0.3-500 ng/mg, mean analytical recovery was 76.9% for quetiapine and 90.9% for pregabalin, matrix effect was 83% for quetiapine and 91% for pregabalin and process efficiency was 63.8% for quetiapine and 82.7% for pregabalin. The intra- and inter-day precision was below 3% in all cases and the intra- and inter-assay accuracy values were in almost all cases better than 12%. The validated method was then applied to bone samples from forensic cases. Drugs were detected in bone in 2 of the 3 blood positive cases. The approximate concentrations in bone were 40 ng/mg for pregabalin and 7 ng/mg for quetiapine. To our knowledge, this is the first time these substances were detected in bones. With this study the number of substances with a validated protocol to be used in human bones in case of necessity is expanded.
Collapse
|
55
|
Adamowicz P, Bakhmut Z, Mikolajczyk A. Screening procedure for 38 fentanyl analogues and five other new opioids in whole blood by liquid chromatography‐tandem mass spectrometry. J Appl Toxicol 2020; 40:1033-1046. [DOI: 10.1002/jat.3962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
|
56
|
Ramírez Fernández MDM, Wille SM, Jankowski D, Hill V, Samyn N. Development of an UPLC–MS/MS method for the analysis of 16 synthetic opioids in segmented hair, and evaluation of the polydrug history in fentanyl analogue users. Forensic Sci Int 2020; 307:110137. [DOI: 10.1016/j.forsciint.2019.110137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
|
57
|
Krajewski LC, Swanson KD, Bragg WA, Shaner RL, Seymour C, Carter MD, Hamelin EI, Johnson RC. Application of the fentanyl analog screening kit toward the identification of emerging synthetic opioids in human plasma and urine by LC-QTOF. Toxicol Lett 2019; 320:87-94. [PMID: 31812604 DOI: 10.1016/j.toxlet.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 02/03/2023]
Abstract
Human exposures to fentanyl analogs, which significantly contribute to the ongoing U.S. opioid overdose epidemic, can be confirmed through the analysis of clinical samples. Our laboratory has developed and evaluated a qualitative approach coupling liquid chromatography and quadrupole time-of-flight mass spectrometry (LC-QTOF) to address novel fentanyl analogs and related compounds using untargeted, data-dependent acquisition. Compound identification was accomplished by searching against a locally-established mass spectral library of 174 fentanyl analogs and metabolites. Currently, our library can identify 150 fentanyl-related compounds from the Fentanyl Analog Screening (FAS) Kit), plus an additional 25 fentanyl-related compounds from individual purchases. Plasma and urine samples fortified with fentanyl-related compounds were assessed to confirm the capabilities and intended use of this LC-QTOF method. For fentanyl, 8 fentanyl-related compounds and naloxone, lower reportable limits (LRL100), defined as the lowest concentration with 100 % true positive rate (n = 12) within clinical samples, were evaluated and range from 0.5 ng/mL to 5.0 ng/mL for urine and 0.25 ng/mL to 2.5 ng/mL in plasma. The application of this high resolution mass spectrometry (HRMS) method enables the real-time detection of known and emerging synthetic opioids present in clinical samples.
Collapse
Affiliation(s)
- Logan C Krajewski
- Battelle Memorial Institute at the Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Kenneth D Swanson
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| | - William A Bragg
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| | - Rebecca L Shaner
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA.
| | - Craig Seymour
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| | - Melissa D Carter
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| | - Elizabeth I Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA, 30341, USA
| |
Collapse
|
58
|
|
59
|
Larabi IA, Martin M, Fabresse N, Etting I, Edel Y, Pfau G, Alvarez JC. Hair testing for 3-fluorofentanyl, furanylfentanyl, methoxyacetylfentanyl, carfentanil, acetylfentanyl and fentanyl by LC–MS/MS after unintentional overdose. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00502-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose
To demonstrate the usefulness of hair testing to determine exposure pattern to fentanyls.
Methods
A 43-year-old male was found unconscious with respiratory depression 15 min after snorting 3 mg of a powder labeled as butyrylfentanyl. He was discharged from hospital within 2 days without blood or urine testing. Two locks of hair were sampled 1 month (M1 A: 0–2 cm (overdose time frame); B: 2–4 cm; C: 4–6 cm) and 1 year (Y1: A: 0–2 cm; B: 2–4 cm) later to monitor his exposure to drugs of abuse by liquid chromatography–tandem mass spectrometry after liquid-liquid extraction.
Results
Hair analysis at M1 showed a repetitive exposure to 3-fluorofentanyl (A/B/C: 150/80/60 pg/mg) with higher concentration in segment A reflecting the overdose period. The non-detection of butyrylfentanyl was consistent with the analysis of the recovered powder identified as 3-fluorofentanyl. Furanylfentanyl (40/20/15 pg/mg) and fentanyl (37/25/3 pg/mg) were also detected in hair. The second hair analysis at Y1 showed the use of three new fentanyls, with probably repetitive exposures to methoxyacetylfentanyl (A/B: 500/600 pg/mg), and single or few exposures to carfentanil (2.5/3 pg/mg) and acetyl fentanyl (1/1 pg/mg). A decreasing exposure to 3-fluorofentanyl (25/80 pg/mg), and increasing consumption of furanylfentanyl (310/500 pg/mg) and fentanyl (620/760 pg/mg) were also observed despite methadone treatment initiation. The patient claimed not consuming three out of the six detected fentanyls.
Conclusions
We report single or repetitive exposure to several fentanyls using hair testing. To our knowledge, this is the first demonstration of 3-fluorofentanyl and methoxyacetylfentanyl in hair samples collected from an authentic abuser.
Collapse
|
60
|
Pichini S, Zaami S, Pacifici R, Tagliabracci A, Busardò FP. Editorial: The Challenge Posed by New Synthetic Opioids: Pharmacology and Toxicology. Front Pharmacol 2019; 10:563. [PMID: 31164825 PMCID: PMC6536647 DOI: 10.3389/fphar.2019.00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Zaami
- Section of Legal Medicine - SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - Roberta Pacifici
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Adriano Tagliabracci
- Section of Legal Medicine, Department of Excellence SBSP - University "Politecnica delle Marche", Ancona, Italy
| | - Francesco Paolo Busardò
- Section of Legal Medicine, Department of Excellence SBSP - University "Politecnica delle Marche", Ancona, Italy
| |
Collapse
|