51
|
Quek C, Bellingham SA, Jung CH, Scicluna BJ, Shambrook MC, Sharples RA, Cheng L, Hill AF. Defining the purity of exosomes required for diagnostic profiling of small RNA suitable for biomarker discovery. RNA Biol 2016; 14:245-258. [PMID: 28005467 PMCID: PMC5324750 DOI: 10.1080/15476286.2016.1270005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small non-coding RNAs (ncRNA), including microRNAs (miRNA), enclosed in exosomes are being utilised for biomarker discovery in disease. Two common exosome isolation methods involve differential ultracentrifugation or differential ultracentrifugation coupled with Optiprep gradient fractionation. Generally, the incorporation of an Optiprep gradient provides better separation and increased purity of exosomes. The question of whether increased purity of exosomes is required for small ncRNA profiling, particularly in diagnostic and biomarker purposes, has not been addressed and highly debated. Utilizing an established neuronal cell system, we used next-generation sequencing to comprehensively profile ncRNA in cells and exosomes isolated by these 2 isolation methods. By comparing ncRNA content in exosomes from these two methods, we found that exosomes from both isolation methods were enriched with miRNAs and contained a diverse range of rRNA, small nuclear RNA, small nucleolar RNA and piwi-interacting RNA as compared with their cellular counterparts. Additionally, tRNA fragments (30-55 nucleotides in length) were identified in exosomes and may act as potential modulators for repressing protein translation. Overall, the outcome of this study confirms that ultracentrifugation-based method as a feasible approach to identify ncRNA biomarkers in exosomes.
Collapse
Affiliation(s)
- Camelia Quek
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Shayne A Bellingham
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia
| | - Chol-Hee Jung
- c VLSCI Life Sciences Computation Centre, University of Melbourne , VIC , Australia
| | - Benjamin J Scicluna
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Mitch C Shambrook
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Robyn A Sharples
- a Department of Biochemistry and Molecular Biology , Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne , VIC , Australia
| | - Lesley Cheng
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| | - Andrew F Hill
- b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , VIC , Australia
| |
Collapse
|
52
|
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74:624-634. [PMID: 27634977 DOI: 10.1093/nutrit/nuw023] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Francesca Pistollato
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Sandra Sumalla Cano
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Iñaki Elio
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Manuel Masias Vergara
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy.
| | - Maurizio Battino
- F. Pistollato, S.S. Cano, I. Elio, M.M. Vergara, F. Giampieri, and M. Battino are with the Centre for Nutrition and Health, Universidad Europea del Atlántico, Santander, Spain. S.S. Cano and I. Elio are with the Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico and the Fundacion Universitaria Iberoamericana (FUNIBER), Barcelona, Spain. M.M. Vergara is with the Universidad Internacional Iberoamericana (UNINI), Arecibo, Puerto Rico, USA. F. Giampieri and M. Battino are with the Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
53
|
DeMarshall CA, Nagele EP, Sarkar A, Acharya NK, Godsey G, Goldwaser EL, Kosciuk M, Thayasivam U, Han M, Belinka B, Nagele RG. Detection of Alzheimer's disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 3:51-62. [PMID: 27239548 PMCID: PMC4879649 DOI: 10.1016/j.dadm.2016.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction There is an urgent need to identify biomarkers that can accurately detect and diagnose Alzheimer's disease (AD). Autoantibodies are abundant and ubiquitous in human sera and have been previously demonstrated as disease-specific biomarkers capable of accurately diagnosing mild-moderate stages of AD and Parkinson's disease. Methods Sera from 236 subjects, including 50 mild cognitive impairment (MCI) subjects with confirmed low CSF Aβ42 levels, were screened with human protein microarrays to identify potential biomarkers for MCI. Autoantibody biomarker performance was evaluated using Random Forest and Receiver Operating Characteristic curves. Results Autoantibody biomarkers can differentiate MCI patients from age-matched and gender-matched controls with an overall accuracy, sensitivity, and specificity of 100.0%. They were also capable of differentiating MCI patients from those with mild-moderate AD and other neurologic and non-neurologic controls with high accuracy. Discussion Autoantibodies can be used as noninvasive and effective blood-based biomarkers for early diagnosis and staging of AD.
Collapse
Affiliation(s)
- Cassandra A DeMarshall
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Eric P Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Durin Technologies, Inc., New Brunswick, NJ, USA
| | - Abhirup Sarkar
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Nimish K Acharya
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - George Godsey
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Eric L Goldwaser
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Mary Kosciuk
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | | - Min Han
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | | - Robert G Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Durin Technologies, Inc., New Brunswick, NJ, USA
| | | |
Collapse
|
54
|
Stoicea N, Du A, Lakis DC, Tipton C, Arias-Morales CE, Bergese SD. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front Genet 2016; 7:11. [PMID: 26904099 PMCID: PMC4746307 DOI: 10.3389/fgene.2016.00011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), small nucleotide sequences that control gene transcription, have the potential to serve an expanded function as indicators in the diagnosis and progression of neurological disorders. Studies involving debilitating neurological diseases such as, Alzheimer's disease, multiple sclerosis, traumatic brain injuries, Parkinson's disease and CNS tumors, already provide validation for their clinical diagnostic use. These small nucleotide sequences have several features, making them favorable candidates as biomarkers, including function in multiple tissues, stability in bodily fluids, a role in pathogenesis, and the ability to be detected early in the disease course. Cerebrospinal fluid, with its cell-free environment, collection process that minimizes tissue damage, and direct contact with the brain and spinal cord, is a promising source of miRNA in the diagnosis of many neurological disorders. Despite the advantages of miRNA analysis, current analytic technology is not yet affordable as a clinically viable diagnostic tool and requires standardization. The goal of this review is to explore the prospective use of CSF miRNA as a reliable and affordable biomarker for different neurological disorders.
Collapse
Affiliation(s)
- Nicoleta Stoicea
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Amy Du
- College of Medicine, The Ohio State University Columbus, OH, USA
| | - D Christie Lakis
- College of Medicine, The Ohio State University Columbus, OH, USA
| | - Courtney Tipton
- College of Medicine, The Ohio State University Columbus, OH, USA
| | - Carlos E Arias-Morales
- Department of Anesthesiology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Sergio D Bergese
- Department of Anesthesiology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
55
|
Yang Q, Diamond MP, Al-Hendy A. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. JOURNAL OF CLINICAL EPIGENETICS 2016; 2:13. [PMID: 27099870 PMCID: PMC4834835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cells release into the extracellular environment, diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles. A number of studies indicate that these extracellular vehicles (EVs) mediate the interaction between cancer cells and their microenvironment; and thereby, play a critical role in the development of cancers. EVs contain cargo which consist of proteins, lipids, mRNAs, and miRNAs that can be delivered to different types of cells in nascent as well as distal locations. Discovery of this latter cargo has drawn an increasing amount of attention, due to their altering effects on the transcriptome, proteins, and subsequent cellular characteristics in recipient cells. Cancer cell derived exosomes (CCEs) have been identified in body fluids of cancer patients including urine, plasma and saliva. Because CCE content largely depends on tumor type and stage, they invariably lend great potential in serving as prognostic and diagnostic markers. Notably, accumulating evidence demonstrates that EV-derived miRNAs have key roles in regulating various aspects of cellular homeostasis, including proliferation, survival, migration, metastasis, and the immune system etc. More recently, diagnostic and therapeutic exploitation of stem cells derived EVs are under investigation. This review aims to summarize recent advances in EV-derived miRNAs in a variety of tumor types, and suggests that these cancer-derived exosomal miRNAs play a critical role in regulating cellular functions in surrounding and distant locations. It also discusses the role of adverse environmental exposure in altering stem cell exosomal miRNA profiling, which we believe leads to changes in the extracellular environment as well as a diverse range of biological processes.
Collapse
|
56
|
Li JA, Zan CF, Xia P, Zheng CJ, Qi ZP, Li CX, Liu ZG, Hou TT, Yang XY. Key genes expressed in different stages of spinal cord ischemia/reperfusion injury. Neural Regen Res 2016; 11:1824-1829. [PMID: 28123428 PMCID: PMC5204240 DOI: 10.4103/1673-5374.194754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The temporal expression of microRNA after spinal cord ischemia/reperfusion injury is not yet fully understood. In the present study, we established a model of spinal cord ischemia in Sprague-Dawley rats by clamping the abdominal aorta for 90 minutes, before allowing reperfusion for 24 or 48 hours. A sham-operated group underwent surgery but the aorta was not clamped. The damaged spinal cord was removed for hematoxylin-eosin staining and RNA extraction. Neuronal degeneration and tissue edema were the most severe in the 24-hour reperfusion group, and milder in the 48-hour reperfusion group. RNA amplification, labeling, and hybridization were used to obtain the microRNA expression profiles of each group. Bioinformatics analysis confirmed four differentially expressed microRNAs (miR-22-3p, miR-743b-3p, miR-201-5p and miR-144-5p) and their common target genes (Tmem69 and Cxcl10). Compared with the sham group, miR-22-3p was continuously upregulated in all three ischemia groups but was highest in the group with no reperfusion, whereas miR-743b-3p, miR-201-5p and miR-144-5p were downregulated in the three ischemia groups. We have successfully identified the key genes expressed at different stages of spinal cord ischemia/reperfusion injury, which provide a reference for future investigations into the mechanism of spinal cord injury.
Collapse
Affiliation(s)
- Jian-An Li
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Fang Zan
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng Xia
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chang-Jun Zheng
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhi-Ping Qi
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Xu Li
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhi-Gang Liu
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ting-Ting Hou
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopaedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
57
|
Kiseleva Y, Ptitsyn K, Radko S, Zgoda V, Archakov A. Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA. ACTA ACUST UNITED AC 2016; 62:403-10. [DOI: 10.18097/pbmc20166204403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.
Collapse
Affiliation(s)
| | - K.G. Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S.P. Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V.G. Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
58
|
|
59
|
Van Giau V, An SSA. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease. J Neurol Sci 2015; 360:141-52. [PMID: 26723991 DOI: 10.1016/j.jns.2015.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive degenerative disorder, and is characterized by memory loss and cognitive decline. It is a complex disorder with both environmental and genetic components. Current diagnosis of AD is based primarily on the analysis of the patient's cognitive function using imaging techniques and the biochemical analyses of bodily fluids. Efforts have been made to develop not only an effective therapeutic, but also a diagnostic capable of identifying AD before the onset of irreversible neurological damage. The molecular content of exosomes is a fingerprint of the releasing cell type and its status. A significant body of literature has demonstrated that molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), hold great promise as novel biomarkers for clinical diagnosis. In addition, expression profiling of miRNAs found in nanovesicles has revealed diagnostic potential in neurodegenerative diseases. Currently, exosomal miRNAs within biological fluids are known as good disease-related markers, and have emerged as a powerful tool for solving many difficulties in both the diagnosis and treatment of AD patients. In this review, we reviewed recent advances in the research of exosomal biomarkers as well as exosomal miRNAs, summarized of actively used approaches to identifying potential miRNA biomarkers through mouse models and their potential application in clinical diagnostics in AD. We also supply a comprehensive overview of the formation, function, and isolation of exosomes.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea.
| |
Collapse
|
60
|
Quek C, Jung CH, Bellingham SA, Lonie A, Hill AF. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data. J Extracell Vesicles 2015; 4:29454. [PMID: 26561006 PMCID: PMC4641893 DOI: 10.3402/jev.v4.29454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/23/2022] Open
Abstract
Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.
Collapse
Affiliation(s)
- Camelia Quek
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Chol-Hee Jung
- Victorian Life Sciences Computation Initiative (VLSCI), The University of Melbourne, Melbourne, VIC, Australia
| | - Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Lonie
- Victorian Life Sciences Computation Initiative (VLSCI), The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia;
| |
Collapse
|
61
|
Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci 2015; 53:121-31. [PMID: 26479834 DOI: 10.3109/10408363.2015.1092496] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small, biologically active extracellular vesicles and over the last decade, both stromal and tumour-derived exosomes (TDE) have been implicated in cancer onset, progression and metastases. Cancer is a complex disease that is underpinned by several "cancer hallmarks", originally described by Hanahan and Weinberg in 2000 and then revised in 2011. The hallmarks of cancer comprise six biological capabilities, along with two emerging hallmarks and two enabling characteristics that facilitate tumour growth and metastatic dissemination. Ample evidence supports a clear role for TDE in four of the original biological hallmarks (sustaining proliferative signalling, resisting cell death, inducing angiogenesis and activating invasion and metastases). A less-defined role exists for TDE in evading growth suppressors, and currently, there is no evidence to suggest a role for TDE in enabling replicative immortality. TDE are intimately involved in the newly defined hallmarks of cancer and enabling characteristics, most evidently in immune inhibition and tumour-promoting inflammation, which ultimately enable escape from immune destruction and tumour progression. Herein, we discuss the role of TDE in the context of the hallmarks and enabling characteristics of cancer as defined by Hanahan and Weinberg.
Collapse
Affiliation(s)
- Katie Meehan
- a School of Pathology and Laboratory Medicine, University of Western Australia , Crawley , Australia and
| | - Laura J Vella
- b Olivia Newton-John Cancer Research Institute, Level 5 Olivia Newton-John Cancer and Wellness Centre , Heidelberg , Australia
| |
Collapse
|
62
|
Wu HZY, Ong KL, Seeher K, Armstrong NJ, Thalamuthu A, Brodaty H, Sachdev P, Mather K. Circulating microRNAs as Biomarkers of Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis 2015; 49:755-66. [DOI: 10.3233/jad-150619] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Helen Zong Ying Wu
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
- Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | | | - Katrin Seeher
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
- Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Nicola J. Armstrong
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
- Mathematics and Statistics, Murdoch University, Perth, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
- Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
- Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Karen Mather
- Centre for Healthy Brain and Ageing, School of Psychiatry, UNSW, Sydney, Australia
| |
Collapse
|
63
|
Mattsson N, Carrillo MC, Dean RA, Devous MD, Nikolcheva T, Pesini P, Salter H, Potter WZ, Sperling RS, Bateman RJ, Bain LJ, Liu E. Revolutionizing Alzheimer's disease and clinical trials through biomarkers. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:412-9. [PMID: 27239522 PMCID: PMC4879481 DOI: 10.1016/j.dadm.2015.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Alzheimer's Association's Research Roundtable met in May 2014 to explore recent progress in developing biomarkers to improve understanding of disease pathogenesis and expedite drug development. Although existing biomarkers have proved extremely useful for enrichment of subjects in clinical trials, there is a clear need to develop novel biomarkers that are minimally invasive and that more broadly characterize underlying pathogenic mechanisms, including neurodegeneration, neuroinflammation, and synaptic dysfunction. These may include blood-based assays and new neuropsychological testing protocols, as well as novel ligands for positron emission tomography imaging, and advanced magnetic resonance imaging methodologies. In addition, there is a need for biomarkers that can serve as theragnostic markers of response to treatment. Standardization remains a challenge, although international consortia have made substantial progress in this area and provide lessons for future standardization efforts.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Sweden
- Corresponding author. Tel.: +46-(0)-40-33-50-36; Fax: +46-(0)-40-33-56-57.
| | | | | | | | | | | | - Hugh Salter
- AztraZeneca, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | | | | | | | | | - Enchi Liu
- Janssen Research and Development, LLC., San Diego, CA, USA
| |
Collapse
|
64
|
Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR. Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers. PLoS One 2015; 10:e0139233. [PMID: 26426747 PMCID: PMC4591334 DOI: 10.1371/journal.pone.0139233] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
To assess the value of exosomal miRNAs as biomarkers for Alzheimer disease (AD), the expression of microRNAs was measured in a plasma fraction enriched in exosomes by differential centrifugation, using Illumina deep sequencing. Samples from 35 persons with a clinical diagnosis of AD dementia were compared to 35 age and sex matched controls. Although these samples contained less than 0.1 microgram of total RNA, deep sequencing gave reliable and informative results. Twenty miRNAs showed significant differences in the AD group in initial screening (miR-23b-3p, miR-24-3p, miR-29b-3p, miR-125b-5p, miR-138-5p, miR-139-5p, miR-141-3p, miR-150-5p, miR-152-3p, miR-185-5p, miR-338-3p, miR-342-3p, miR-342-5p, miR-548at-5p, miR-659-5p, miR-3065-5p, miR-3613-3p, miR-3916, miR-4772-3p, miR-5001-3p), many of which satisfied additional biological and statistical criteria, and among which a panel of seven miRNAs were highly informative in a machine learning model for predicting AD status of individual samples with 83–89% accuracy. This performance is not due to over-fitting, because a) we used separate samples for training and testing, and b) similar performance was achieved when tested on technical replicate data. Perhaps the most interesting single miRNA was miR-342-3p, which was a) expressed in the AD group at about 60% of control levels, b) highly correlated with several of the other miRNAs that were significantly down-regulated in AD, and c) was also reported to be down-regulated in AD in two previous studies. The findings warrant replication and follow-up with a larger cohort of patients and controls who have been carefully characterized in terms of cognitive and imaging data, other biomarkers (e.g., CSF amyloid and tau levels) and risk factors (e.g., apoE4 status), and who are sampled repeatedly over time. Integrating miRNA expression data with other data is likely to provide informative and robust biomarkers in Alzheimer disease.
Collapse
Affiliation(s)
- Giovanni Lugli
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Aaron M. Cohen
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University, Chicago, Illinois, United States of America
| | - Raj C. Shah
- Rush Alzheimer’s Disease Center, Rush University, Chicago, Illinois, United States of America
| | | | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, Urbana, Illinois, United States of America
| | - Neil R. Smalheiser
- Department of Psychiatry and Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
65
|
Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2015; 20:1188-96. [PMID: 25349172 DOI: 10.1038/mp.2014.127] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/10/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
There is no consensus for a blood-based test for the early diagnosis of Alzheimer's disease (AD). Expression profiling of small non-coding RNA's, microRNA (miRNA), has revealed diagnostic potential in human diseases. Circulating miRNA are found in small vesicles known as exosomes within biological fluids such as human serum. The aim of this work was to determine a set of differential exosomal miRNA biomarkers between healthy and AD patients, which may aid in diagnosis. Using next-generation deep sequencing, we profiled exosomal miRNA from serum (N=49) collected from the Australian Imaging, Biomarkers and Lifestyle Flagship Study (AIBL). Sequencing results were validated using quantitative reverse transcription PCR (qRT-PCR; N=60), with predictions performed using the Random Forest method. Additional risk factors collected during the 4.5-year AIBL Study including clinical, medical and cognitive assessments, and amyloid neuroimaging with positron emission tomography were assessed. An AD-specific 16-miRNA signature was selected and adding established risk factors including age, sex and apolipoprotein ɛ4 (APOE ɛ4) allele status to the panel of deregulated miRNA resulted in a sensitivity and specificity of 87% and 77%, respectively, for predicting AD. Furthermore, amyloid neuroimaging information for those healthy control subjects incorrectly classified with AD-suggested progression in these participants towards AD. These data suggest that an exosomal miRNA signature may have potential to be developed as a suitable peripheral screening tool for AD.
Collapse
|
66
|
Turk MN, Huentelman MJ. Nucleic acid-based risk factors and biomarkers: a future perspective on their use and development in Alzheimer's disease. Per Med 2015; 12:475-482. [PMID: 29749892 DOI: 10.2217/pme.15.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our population lives longer the impact of Alzheimer's disease threatens to exert socioeconomic influences across generations. We now know that by the manifestation of memory problems, the neuropathological processes associated with Alzheimer's disease have progressed in the brain for over a decade. This represents an opportunity for medicine - a window to detect, diagnose and treat to prevent the onset of these cognitive symptoms. To achieve these goals we need the confluence of safe effective treatments and an improved ability to identify individuals at highest risk for the disease as early as possible. We will touch on current work in that arena and discuss the future of diagnostic and risk assessment capabilities through the use of nucleic acid-based measurements.
Collapse
Affiliation(s)
- Mari N Turk
- The Translational Genomics Research Institute (TGen), Neurogenomics Division, 8012 S 32nd Way, Phoenix, AZ 85004, USA
| | - Matthew J Huentelman
- The Translational Genomics Research Institute (TGen), Neurogenomics Division, 8012 S 32nd Way, Phoenix, AZ 85004, USA
| |
Collapse
|
67
|
Zhao Y, Bhattacharjee S, Dua P, Alexandrov PN, Lukiw WJ. microRNA-Based Biomarkers and the Diagnosis of Alzheimer's Disease. Front Neurol 2015. [PMID: 26217305 PMCID: PMC4499702 DOI: 10.3389/fneur.2015.00162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Cell Biology and Anatomy, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA
| | | | - Prerna Dua
- Department of Health Information Management, Louisiana State University , Ruston, LA , USA
| | | | - Walter J Lukiw
- LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA
| |
Collapse
|
68
|
MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease. PLoS One 2015; 10:e0126423. [PMID: 25992776 PMCID: PMC4439119 DOI: 10.1371/journal.pone.0126423] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
The miRBase-21 database currently lists 1881 microRNA (miRNA) precursors and 2585 unique mature human miRNAs. Since their discovery, miRNAs have proved to present a new level of epigenetic post-transcriptional control of protein synthesis. Initial results point to a possible involvement of miRNA in Alzheimer’s disease (AD). We applied OpenArray technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF) samples of AD patients (n = 22) and controls (n = 28). Using a Cq of 34 as cut-off, we identified positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying the new explorative “Measure of relevance” method, 6 reliable and 9 informative biomarkers were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR-1274a as differentially expressed in AD reaching Bonferroni corrected significance. MANCOVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analysis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. Referring to the Ingenuity database we could identify a set of AD associated genes that are targeted by these miRNAs. Highly predicted targets included genes involved in the regulation of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR.
Collapse
|
69
|
Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0516. [PMID: 25135977 DOI: 10.1098/rstb.2013.0516] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by 'infecting' neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS.
Collapse
Affiliation(s)
- D M Pegtel
- Exosomes Research Group, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - L Peferoen
- Neuropathology, Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - S Amor
- Neuropathology, Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
70
|
Müller M, Jäkel L, Bruinsma IB, Claassen JA, Kuiperij HB, Verbeek MM. MicroRNA-29a Is a Candidate Biomarker for Alzheimer's Disease in Cell-Free Cerebrospinal Fluid. Mol Neurobiol 2015; 53:2894-2899. [PMID: 25895659 PMCID: PMC4902829 DOI: 10.1007/s12035-015-9156-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/19/2015] [Indexed: 12/26/2022]
Abstract
The identification of reliable biomarkers for Alzheimer's disease (AD) remains challenging. Recently, abnormal levels of microRNAs (miRNAs) miR-27a, miR-29a, miR-29b, and miR-125b in cerebrospinal fluid (CSF) of AD patients were reported. We aimed to confirm the biomarker potential of these miRNAs for AD diagnosis. Additionally, we examined the influence of blood contamination on CSF miRNA levels as potential confounding factor. We studied expression levels of the four miRNAs by quantitative PCR in CSF samples of AD patients and non-demented controls, and in blood-spiked CSF. Levels of miR-29a, but not of the other three miRNAs, were increased by a factor of 2.2 in CSF of AD patients. Spiking of small amounts of blood into CSF revealed that miR-27a and miR-29a, but not miR-125b levels were strongly influenced by the number of blood cells in the sample. In conclusion, miR-29a may be a candidate biomarker for AD, but only when used in cell-free CSF.
Collapse
Affiliation(s)
- Mareike Müller
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ilona B Bruinsma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jurgen A Claassen
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
71
|
Satoh JI, Kino Y, Niida S. MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer's Disease from Public Data. Biomark Insights 2015; 10:21-31. [PMID: 25922570 PMCID: PMC4401249 DOI: 10.4137/bmi.s25132] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Alzheimer’s disease (AD) is the most common cause of dementia with no curative therapy currently available. Establishment of sensitive and non-invasive biomarkers that promote an early diagnosis of AD is crucial for the effective administration of disease-modifying drugs. MicroRNAs (miRNAs) mediate posttranscriptional repression of numerous target genes. Aberrant regulation of miRNA expression is implicated in AD pathogenesis, and circulating miRNAs serve as potential biomarkers for AD. However, data analysis of numerous AD-specific miRNAs derived from small RNA-sequencing (RNA-Seq) is most often laborious. METHODS To identify circulating miRNA biomarkers for AD, we reanalyzed a publicly available small RNA-Seq dataset, composed of blood samples derived from 48 AD patients and 22 normal control (NC) subjects, by a simple web-based miRNA data analysis pipeline that combines omiRas and DIANA miRPath. RESULTS By using omiRas, we identified 27 miRNAs expressed differentially between both groups, including upregulation in AD of miR-26b-3p, miR-28–3p, miR-30c-5p, miR-30d-5p, miR-148b-5p, miR-151a-3p, miR-186–5p, miR-425–5p, miR-550a-5p, miR-1468, miR-4781–3p, miR-5001–3p, and miR-6513–3p and downregulation in AD of let-7a-5p, let-7e-5p, let-7f-5p, let-7g-5p, miR-15a-5p, miR-17–3p, miR-29b-3p, miR-98–5p, miR-144–5p, miR-148a-3p, miR-502–3p, miR-660–5p, miR-1294, and miR-3200–3p. DIANA miRPath indicated that miRNA-regulated pathways potentially downregulated in AD are linked with neuronal synaptic functions, while those upregulated in AD are implicated in cell survival and cellular communication. CONCLUSIONS The simple web-based miRNA data analysis pipeline helps us to effortlessly identify candidates for miRNA biomarkers and pathways of AD from the complex small RNA-Seq data.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Shumpei Niida
- BioBank Omics Unit, National Center for Geriatrics and Gerontology (NCGG), bu, Aichi, Japan
| |
Collapse
|
72
|
Extracellular vesicles--Their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 2015; 40:89-96. [PMID: 25704308 DOI: 10.1016/j.semcdb.2015.02.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/13/2022]
Abstract
Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.
Collapse
|
73
|
Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Front Oncol 2014; 4:361. [PMID: 25566500 PMCID: PMC4271613 DOI: 10.3389/fonc.2014.00361] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metastasis in cancer consists of multiple steps, including epithelial–mesenchymal-transition (EMT), which is characterized by the loss of epithelial-like characteristics and the gain of mesenchymal-like attributes including cell migration and invasion. It is clear that the tumor microenvironment can promote the metastatic cascade and that intercellular communication is necessary for this to occur. Exosomes are small membranous vesicles secreted by most cell types into the extracellular environment and they are important communicators in the tumor microenvironment. They promote angiogenesis, invasion, and proliferation in recipient cells to support tumor growth and a prometastatic phenotype. Although it is clear that exosomes contribute to cancer cell plasticity, experimental evidence to define exosome induced plasticity as EMT is only just coming to light. This review will discuss recent research on exosomal regulation of the EMT process in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Jayne Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Olivia Newton-John Cancer and Wellness Centre , Heidelberg, VIC , Australia ; The Florey Institute for Neuroscience and Mental Health , Parkville, VIC , Australia
| |
Collapse
|
74
|
Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol 2014; 53:818-834. [PMID: 25502465 PMCID: PMC4752585 DOI: 10.1007/s12035-014-9054-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Collapse
Affiliation(s)
- Arian Aryani
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
75
|
MicroRNA expression profiling in PBMCs: a potential diagnostic biomarker of chronic hepatitis C. DISEASE MARKERS 2014; 2014:367157. [PMID: 25505813 PMCID: PMC4255053 DOI: 10.1155/2014/367157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/11/2014] [Accepted: 09/27/2014] [Indexed: 02/06/2023]
Abstract
The expression levels of miR-16, miR-193b, miR-199a, miR-222, and miR-324 in PBMCs were significantly higher in CHC patients compared with healthy controls and significantly different between CHC patients with HCV genotype 1 (GT-1) and non-genotype-1 (non-GT-1). Multivariate logistic regression analysis also showed that patients with high expression levels of the six target miRNAs had an approximately 7.202-fold risk of CHC compared with those with low expression levels of the target miRNAs. We concluded that the expression levels of miR-16, miR-193b, miR-199a, miR-222, and miR-324 target miRNAs in PBMCs of CHC may act as significant risk biomarkers for the development of CHC.
Collapse
|
76
|
Arata H, Hosokawa K, Maeda M. Rapid sub-attomole microRNA detection on a portable microfluidic chip. ANAL SCI 2014; 30:129-35. [PMID: 24420254 DOI: 10.2116/analsci.30.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microfluidic devices are an attractive choice for meeting the requirements of point-of-care microRNA detection. A method using a microfluidic device can drastically shorten the incubation time because the device conveys sample molecules right straight to the surface-immobilized probe DNAs by hydrodynamic force. In this review, we present an overview of a new method for rapid and sensitive microRNA detection from a small sample volume using a power-free microfluidic device driven by degassed poly-dimethylsiloxane (PDMS). Two key technologies for this detection method are summarized. One of the methods relies on the coaxial stacking effect of nucleic acids during sandwich hybridization. This effect is also efficient for stabilizing sandwich hybridization consisting of small DNA and microRNA. The other is the laminar flow-assisted dendritic amplification, which increases the fluorescent signal by supplying two amplification reagents from laminar streams to surface-bound molecules. Utilizing both technologies, microRNA detection is possible with a 0.5 pM detection limit from a 0.5 μL sample corresponding to 0.25 attomoles, with a detection time of 20 min. Since microRNAs are associated with various human diseases, future studies of these technologies might contribute to improved healthcare and may have both industrial and societal impacts.
Collapse
|
77
|
Bagewadi S, Bobić T, Hofmann-Apitius M, Fluck J, Klinger R. Detecting miRNA Mentions and Relations in Biomedical Literature. F1000Res 2014; 3:205. [PMID: 26535109 PMCID: PMC4602280 DOI: 10.12688/f1000research.4591.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) have demonstrated their potential as post-transcriptional gene expression regulators, participating in a wide spectrum of regulatory events such as apoptosis, differentiation, and stress response. Apart from the role of miRNAs in normal physiology, their dysregulation is implicated in a vast array of diseases. Dissection of miRNA-related associations are valuable for contemplating their mechanism in diseases, leading to the discovery of novel miRNAs for disease prognosis, diagnosis, and therapy. MOTIVATION Apart from databases and prediction tools, miRNA-related information is largely available as unstructured text. Manual retrieval of these associations can be labor-intensive due to steadily growing number of publications. Additionally, most of the published miRNA entity recognition methods are keyword based, further subjected to manual inspection for retrieval of relations. Despite the fact that several databases host miRNA-associations derived from text, lower sensitivity and lack of published details for miRNA entity recognition and associated relations identification has motivated the need for developing comprehensive methods that are freely available for the scientific community. Additionally, the lack of a standard corpus for miRNA-relations has caused difficulty in evaluating the available systems. We propose methods to automatically extract mentions of miRNAs, species, genes/proteins, disease, and relations from scientific literature. Our generated corpora, along with dictionaries, and miRNA regular expression are freely available for academic purposes. To our knowledge, these resources are the most comprehensive developed so far. RESULTS The identification of specific miRNA mentions reaches a recall of 0.94 and precision of 0.93. Extraction of miRNA-disease and miRNA-gene relations lead to an F 1 score of up to 0.76. A comparison of the information extracted by our approach to the databases miR2Disease and miRSel for the extraction of Alzheimer's disease related relations shows the capability of our proposed methods in identifying correct relations with improved sensitivity. The published resources and described methods can help the researchers for maximal retrieval of miRNA-relations and generation of miRNA-regulatory networks. AVAILABILITY The training and test corpora, annotation guidelines, developed dictionaries, and supplementary files are available at http://www.scai.fraunhofer.de/mirna-corpora.html.
Collapse
Affiliation(s)
- Shweta Bagewadi
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
- University of Bonn, B-IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Tamara Bobić
- Hasso Plattner Institute Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Potsdam, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
- University of Bonn, B-IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Juliane Fluck
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
| | - Roman Klinger
- Semantic Computing Group, CIT-EC, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
78
|
Bagewadi S, Bobić T, Hofmann-Apitius M, Fluck J, Klinger R. Detecting miRNA Mentions and Relations in Biomedical Literature. F1000Res 2014; 3:205. [PMID: 26535109 DOI: 10.12688/f1000research.4591.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
Introduction: MicroRNAs (miRNAs) have demonstrated their potential as post-transcriptional gene expression regulators, participating in a wide spectrum of regulatory events such as apoptosis, differentiation, and stress response. Apart from the role of miRNAs in normal physiology, their dysregulation is implicated in a vast array of diseases. Dissection of miRNA-related associations are valuable for contemplating their mechanism in diseases, leading to the discovery of novel miRNAs for disease prognosis, diagnosis, and therapy. Motivation: Apart from databases and prediction tools, miRNA-related information is largely available as unstructured text. Manual retrieval of these associations can be labor-intensive due to steadily growing number of publications. Additionally, most of the published miRNA entity recognition methods are keyword based, further subjected to manual inspection for retrieval of relations. Despite the fact that several databases host miRNA-associations derived from text, lower sensitivity and lack of published details for miRNA entity recognition and associated relations identification has motivated the need for developing comprehensive methods that are freely available for the scientific community. Additionally, the lack of a standard corpus for miRNA-relations has caused difficulty in evaluating the available systems. We propose methods to automatically extract mentions of miRNAs, species, genes/proteins, disease, and relations from scientific literature. Our generated corpora, along with dictionaries, and miRNA regular expression are freely available for academic purposes. To our knowledge, these resources are the most comprehensive developed so far. Results: The identification of specific miRNA mentions reaches a recall of 0.94 and precision of 0.93. Extraction of miRNA-disease and miRNA-gene relations lead to an F 1 score of up to 0.76. A comparison of the information extracted by our approach to the databases miR2Disease and miRSel for the extraction of Alzheimer's disease related relations shows the capability of our proposed methods in identifying correct relations with improved sensitivity. The published resources and described methods can help the researchers for maximal retrieval of miRNA-relations and generation of miRNA-regulatory networks. Availability: The training and test corpora, annotation guidelines, developed dictionaries, and supplementary files are available at http://www.scai.fraunhofer.de/mirna-corpora.html.
Collapse
Affiliation(s)
- Shweta Bagewadi
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany ; University of Bonn, B-IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Tamara Bobić
- Hasso Plattner Institute Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Potsdam, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany ; University of Bonn, B-IT, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Juliane Fluck
- Fraunhofer SCAI, Bioinformatics, Schloss Birlinghoven, 53754, Sankt Augustin, Germany
| | - Roman Klinger
- Semantic Computing Group, CIT-EC, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
79
|
Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol 2014; 28:69-74. [DOI: 10.1016/j.copbio.2013.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/16/2013] [Accepted: 11/30/2013] [Indexed: 12/31/2022]
|
80
|
Demartini DR, Schilling LP, da Costa JC, Carlini CR. Alzheimer's and Parkinson's diseases: an environmental proteomic point of view. J Proteomics 2014; 104:24-36. [PMID: 24751585 DOI: 10.1016/j.jprot.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's and Parkinson's diseases are severe neurodegenerative conditions triggered by complex biochemical routes. Many groups are currently pursuing the search for valuable biomarkers to either perform early diagnostic or to follow the disease's progress. Several studies have reported relevant findings regarding environmental issues and the progression of such diseases. Here the etiology and mechanisms of these diseases are briefly reviewed. Approaches that might reveal candidate biomarkers and environmental stressors associated to the diseases were analyzed under a proteomic perspective. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil.
| | - Lucas Porcello Schilling
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil.
| | - Célia Regina Carlini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
81
|
Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauß A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci 2014; 6:75. [PMID: 24795628 PMCID: PMC3997018 DOI: 10.3389/fnagi.2014.00075] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
One of the central research questions on the etiology of Alzheimer’s disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits. (2) The Tg4–42 model expresses N-truncated Aβ4–42 and develops neuron loss and behavioral deficits albeit without plaque formation. Our results show that learning and memory deficits in the Morris water maze and fear conditioning tasks in Tg4–42 mice at 12 months of age are similar to the deficits in 5XFAD animals. This suggested that comparative gene expression analysis between the models would allow the dissection of plaque-related and -unrelated disease relevant factors. Using deep sequencing differentially expressed genes (DEGs) were identified and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-symptomatic young 5XFAD mice, and none in young Tg4–42 mice. In the aged cohort, 131 DEGs were found in 5XFAD and 56 DEGs in Tg4–42 mice. Many of the DEGs specific to the 5XFAD model belong to neuroinflammatory processes typically associated with plaques. Interestingly, 36 DEGs were identified in both mouse models indicating common disease pathways associated with behavioral deficits and neuron loss.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Tim Kacprowski
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald , Germany
| | - Robert Weissmann
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Henning Borgers
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Andreas Brauß
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Christian Sperling
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| | - Mario Albrecht
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald , Greifswald , Germany ; Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Lars R Jensen
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen , Goettingen , Germany
| |
Collapse
|
82
|
Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014; 3:23743. [PMID: 24683445 PMCID: PMC3968297 DOI: 10.3402/jev.v3.23743] [Citation(s) in RCA: 610] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction microRNA (miRNA) are small non-coding RNA species that are transcriptionally processed in the host cell and released extracellularly into the bloodstream. Normally involved in post-transcriptional gene silencing, the deregulation of miRNA has been shown to influence pathogenesis of a number of diseases. Background Next-generation deep sequencing (NGS) has provided the ability to profile miRNA in biological fluids making this approach a viable screening tool to detect miRNA biomarkers. However, collection and handling procedures of blood needs to be greatly improved for miRNA analysis in order to reliably detect differences between healthy and disease patients. Furthermore, ribonucleases present in blood can degrade RNA upon collection rendering extracellular miRNA at risk of degradation. These factors have consequently decreased sensitivity and specificity of miRNA biomarker assays. Methods Here, we use NGS to profile miRNA in various blood components and identify differences in profiles within peripheral blood compared to cell-free plasma or serum and extracellular vesicles known as exosomes. We also analyse and compare the miRNA content in exosomes prepared by ultracentrifugation methods and commercial exosome isolation kits including treating samples with RNaseA. Conclusion This study demonstrates that exosomal RNA is protected by RNaseA treatment and that exosomes provide a consistent source of miRNA for disease biomarker detection.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Robyn A Sharples
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Benjamin J Scicluna
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
83
|
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18:371-90. [PMID: 24533657 PMCID: PMC3943687 DOI: 10.1111/jcmm.12236] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Collapse
Affiliation(s)
- Leni Moldovan
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
84
|
Turchinovich A, Cho WC. The origin, function and diagnostic potential of extracellular microRNA in human body fluids. Front Genet 2014; 5:30. [PMID: 24575125 PMCID: PMC3921603 DOI: 10.3389/fgene.2014.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center Heidelberg, Germany ; Department of Gynecology and Obstetrics, University Women's Clinic Heidelberg Heidelberg, Germany
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital Kowloon, Hong Kong
| |
Collapse
|
85
|
Dalton VS, Kolshus E, McLoughlin DM. Epigenetics and depression: return of the repressed. J Affect Disord 2014; 155:1-12. [PMID: 24238955 DOI: 10.1016/j.jad.2013.10.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). METHODS PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". RESULTS There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. LIMITATIONS As a narrative review, the current report was interpretive and qualitative in nature. CONCLUSION Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression.
Collapse
Affiliation(s)
- Victoria S Dalton
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James's Street, Dublin 8, Ireland
| | - Erik Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James's Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James's Street, Dublin 8, Ireland.
| |
Collapse
|
86
|
Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014. [PMID: 24683445 DOI: 10.3402/jev.v3403.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION microRNA (miRNA) are small non-coding RNA species that are transcriptionally processed in the host cell and released extracellularly into the bloodstream. Normally involved in post-transcriptional gene silencing, the deregulation of miRNA has been shown to influence pathogenesis of a number of diseases. BACKGROUND Next-generation deep sequencing (NGS) has provided the ability to profile miRNA in biological fluids making this approach a viable screening tool to detect miRNA biomarkers. However, collection and handling procedures of blood needs to be greatly improved for miRNA analysis in order to reliably detect differences between healthy and disease patients. Furthermore, ribonucleases present in blood can degrade RNA upon collection rendering extracellular miRNA at risk of degradation. These factors have consequently decreased sensitivity and specificity of miRNA biomarker assays. METHODS Here, we use NGS to profile miRNA in various blood components and identify differences in profiles within peripheral blood compared to cell-free plasma or serum and extracellular vesicles known as exosomes. We also analyse and compare the miRNA content in exosomes prepared by ultracentrifugation methods and commercial exosome isolation kits including treating samples with RNaseA. CONCLUSION This study demonstrates that exosomal RNA is protected by RNaseA treatment and that exosomes provide a consistent source of miRNA for disease biomarker detection.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Robyn A Sharples
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Benjamin J Scicluna
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia ; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
87
|
Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 2013; 86:433-44. [PMID: 24352158 DOI: 10.1038/ki.2013.502] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) have been shown to circulate in biological fluids and are enclosed in vesicles such as exosomes; they are present in urine and represent a noninvasive methodology to detect biomarkers for diagnostic testing. The low abundance of RNA in urine creates difficulties in its isolation, of which exosomal miRNA is a small fraction, making downstream RNA assays challenging. Here, we investigate methods to maximize exosomal isolation and RNA yield for next-generation deep sequencing. Upon characterizing exosomal proteins and total RNA content in urine, several commercially available kits were tested for their RNA extraction efficiency. We subsequently used the methods with the highest miRNA content to profile baseline miRNA expression using next-generation deep sequencing. Comparisons of miRNA profiles were also made with exosomes isolated by differential ultracentrifugation methodology and a commercially available column-based protocol. Overall, miRNAs were found to be significantly enriched and intact in urine-derived exosomes compared with cell-free urine. The presence of other noncoding RNAs such as small nuclear and small nucleolar RNA in the exosomes, in addition to coding sequences related to kidney and bladder conditions, was also detected. Our study extensively characterizes the RNA content of exosomes isolated from urine, providing the potential to identify miRNA biomarkers in human urine.
Collapse
|